OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1549–1558

Adaptive detection mechanisms in globally statistically nonstationary-oriented noise

Yani Zhang, Craig K. Abbey, and Miguel P. Eckstein  »View Author Affiliations


JOSA A, Vol. 23, Issue 7, pp. 1549-1558 (2006)
http://dx.doi.org/10.1364/JOSAA.23.001549


View Full Text Article

Enhanced HTML    Acrobat PDF (868 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Studies have shown that human observers can adapt their detection strategies on the basis of the statistical properties of noisy backgrounds. One common property of such studies is that the backgrounds studied are (or are assumed to be) statistically stationary. Less is known about how humans detect signals in the more complex setting of nonstationary backgrounds. We investigated detection performance in the presence of a globally nonstationary oriented noise background. We controlled for noise-correlation effects by considering a stationary background with a power spectrum matched to the average spectrum of the nonstationary process. Performance of a nonadaptive linear filter that was unable to make use of differences in local statistics yielded constant performance in both the stationary and the nonstationary backgrounds. In contrast, performance of an ideal observer that uses local noise statistics yielded substantially higher (140%) detectability with the nonstationary backgrounds than the stationary ones. Human observers showed significantly higher (33%) detection performance in the nonstationary backgrounds, suggesting that they can adapt their detection mechanisms to the local orientation properties.

© 2006 Optical Society of America

OCIS Codes
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: November 4, 2005
Revised Manuscript: January 18, 2006
Manuscript Accepted: January 22, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Yani Zhang, Craig K. Abbey, and Miguel P. Eckstein, "Adaptive detection mechanisms in globally statistically nonstationary-oriented noise," J. Opt. Soc. Am. A 23, 1549-1558 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-7-1549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. B. Barlow, 'Efficiency of detecting changes of density in random dot patterns,' Vision Res. 18, 637-650 (1978).
  2. A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, 'Efficiency of human visual signal discrimination,' Science 214, 93-94 (1981).
  3. A. Burgess and H. Ghandeharian, 'Visual signal detection. I. Ability to use phase information,' J. Opt. Soc. Am. A 1, 900-905 (1984).
  4. D. G. Pelli, 'Uncertainty explains many aspects of visual contrast detection and discrimination,' J. Opt. Soc. Am. A 2, 1508-1532 (1985).
  5. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, and G. W. Seeley, 'Effect of noise correlation on detectability of disk signals in medical imaging,' J. Opt. Soc. Am. A 2, 1752-1759 (1985).
  6. J. P. Rolland and H. H. Barrett, 'Effect of random background inhomogeneity on observer detection performance,' J. Opt. Soc. Am. A 9, 649-658 (1992).
  7. A. E. Burgess, 'Visual signal detection with two-component noise: low-pass spectrum effects,' J. Opt. Soc. Am. A 16, 694-704 (1999).
  8. M. P. Eckstein, A. J. Ahumada, and A. B. Watson, 'Image discrimination models predict visual detection in natural medical image backgrounds,' in Proc. SPIE 3016, 44-56 (1997).
  9. M. P. Eckstein, J. L. Bartroff, C. K. Abbey, J. S. Whiting, and F. O. Bochud, 'Automated computer evaluation and optimization of image compression of x-ray coronary angiograms for signal known exactly detection tasks,' Opt. Express 11, 460-475 (2003).
  10. Y. Zhang, B. T. Pham, and M. P. Eckstein, 'Evaluation of JPEG 2000 encoder options: human and model observer detection of variable signals in X-ray coronary angiograms,' IEEE Trans. Med. Imaging 23, 613-632 (2004).
  11. A. E. Burgess, F. L. Jacobson, and P. F. Judy, 'Human observer detection experiments with mammograms and power-law noise,' Med. Phys. 28, 419-437 (2001).
  12. M. A. Webster and E. Miyahara, 'Contrast adaptation and the spatial structure of natural images,' J. Opt. Soc. Am. A 14, 2355-2366 (1997).
  13. R. C. Gonzales and R. E. Woods, Digital Image Processing (Prentice Hall, 2001).
  14. W. K. Pratt, Digital Image Processing; PIKS Inside (Wiley, 2001).
  15. Image A from http://www.pixelperfectdigital.com; image B from http://www.nist.gov; image C from http://www.radiologyinfo.org; image D from http://peipa.essex.ac.uk/info/mias.html.
  16. A. E. Burgess, X. Li, and C. K. Abbey, 'Visual signal detectability with two noise components: anomalous masking effects,' J. Opt. Soc. Am. A 14, 2420-2442 (1997).
  17. A. E. Burgess and H. Ghandeharian, 'Visual signal detection. II. Signal-location identification,' J. Opt. Soc. Am. A 1, 906-910 (1984).
  18. A. E. Burgess, 'Statistically defined backgrounds: performance of a modified nonprewhitening observer model,' J. Opt. Soc. Am. A 11, 1237-1242 (1994).
  19. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, 'Model observers for assessment of image quality,' Proc. Natl. Acad. Sci. U.S.A. 90, 9758-9765 (1993).
  20. R. F. Wagner and K. E. Weaver, 'An assortment of image quality indices for radiographic film-screen combinations--can they be resolved?' in Proc. SPIE 35, 83-84 (1972).
  21. M. P. Eckstein, C. K. Abbey, and F. O. Bochud, 'A practical guide to model observers for visual detection in synthetic and natural noisy images,' in Handbook of Medical Imaging (SPIE, 2000).
  22. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, 'Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds,' J. Opt. Soc. Am. A 17, 193-205 (2000).
  23. D. M. Green and J. A. Swets, Signal Detection Theory and Psychophysics (Wiley, 1966).
  24. For the NPWE and PW models, the detectability shown in Fig. 6 is transformed from Pc. For the IO with the GNS test image, the detectability is obtained by Eq.(13) to avoid the difficulties of transforming a Pc of value 1 (owing to the high signal contrast) to dmafc (please see Appendix for the comparison between d′ and dmafc in this latter case).
  25. A. E. Burgess and B. Colborne, 'Visual signal detection. IV. Observer inconsistency,' J. Opt. Soc. Am. A 5, 617-627 (1988).
  26. M. P. Eckstein, A. J. Ahumada, and A. B. Watson, 'Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,' J. Opt. Soc. Am. A 14, 2406-2419 (1997).
  27. C. K. Abbey and H. H. Barrett, 'Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability,' J. Opt. Soc. Am. A 18, 473-488 (2001).
  28. M. P. Eckstein, C. K. Abbey, F. O. Bochud, and J. S. Whiting, 'The effect of image compression in model and human observers,' in Proc. SPIE 3663, 243-252 (1999).
  29. F. A. A. Kingdom, D. Keeble, and B. Moulden, 'Sensitivity to orientation modulation in micropattern-based textures,' Vision Res. 35, 79-91 (1994).
  30. K. J. Myers and H. H. Barrett, 'Addition of a channel mechanism to the ideal-observer model,' J. Opt. Soc. Am. A 4, 2447-2457 (1987).
  31. J. Yao and H. H. Barrett, 'Predicting human performance by a channelized Hotelling observer model,' in Proc. SPIE 1768, 161-168 (1992).
  32. M. P. Eckstein and J. S. Whiting, 'Lesion detection in structured noise,' Acad. Radiol. 2, 249-253 (1995).
  33. D. G. Pelli, 'Effects of visual noise,' Ph.D. dissertation (Cambridge University, 1981).
  34. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, 'Further investigation of the effect of phase spectrum on visual detection in structured backgrounds,' in Proc. SPIE 3663, 273-281 (1999).
  35. M. Bath, M. Hakansson, S. Borjesson, C. Hoeschen, O. Tischenko, F. O. Bochud, F. R. Verdun, G. Ullman, S. Kheddache, A. Tingberg, and L. G. Mansson, 'Investigation of image components affecting the detection of lung nodules in digital chest radiography,' in Proc. SPIE 5749, 231-242 (2005).
  36. F. O. Bochud, F. R. Verdun, C. Hessler, and J. F. Valley, 'Detectability on radiological images: the effect of the anatomical noise,' in Proc. SPIE 2436, 156-164 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited