OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1639–1644

Radiative transfer equations with varying refractive index: a mathematical perspective

Guillaume Bal  »View Author Affiliations

JOSA A, Vol. 23, Issue 7, pp. 1639-1644 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (99 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Established mathematical techniques to model the energy density of high-frequency waves in random media by radiative transfer equations and to model the small mean-free-path limit of radiative transfer solutions by diffusion equations are reviewed. These techniques are then applied to the derivation of radiative transfer and diffusion equations for the radiance, also known as specific intensity, of electromagnetic waves in situations where the refractive index of the underlying structure varies smoothly in space.

© 2006 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(080.2710) Geometric optics : Inhomogeneous optical media
(170.5280) Medical optics and biotechnology : Photon migration
(290.1990) Scattering : Diffusion

ToC Category:
Coherence and Statistical Optics

Original Manuscript: November 22, 2005
Manuscript Accepted: January 20, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Guillaume Bal, "Radiative transfer equations with varying refractive index: a mathematical perspective," J. Opt. Soc. Am. A 23, 1639-1644 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  2. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  3. L. Erdös and H. T. Yau, 'Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation,' Commun. Pure Appl. Math. 53, 667-735 (2000). [CrossRef]
  4. H. Spohn, 'Derivation of the transport equation for electrons moving through random impurities,' J. Stat. Phys. 17, 385-412 (1977). [CrossRef]
  5. G. Bal, 'Kinetic models for scalar wave fields in random media,' Wave Motion 43, 132-157 (2005).
  6. L. Ryzhik, G. Papanicolaou, and J. B. Keller, 'Transport equations for elastic and other waves in random media,' Wave Motion 24, 327-370 (1996). [CrossRef]
  7. A. Bensoussan, J.-L. Lions, and G. C. Papanicolaou, 'Boundary layers and homogenization of transport processes,' Res. Inst. Math. Sci. Kyoto Univ. 15, 53-157 (1979). [CrossRef]
  8. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology (Springer-Verlag, 1993), Vol. 6. [CrossRef]
  9. E. W. Larsen and J. B. Keller, 'Asymptotic solution of neutron transport problems for small mean free paths,' J. Math. Phys. 15, 75-81 (1974). [CrossRef]
  10. H. A. Ferwerda, 'The radiative transfer equation for scattering media with a spatially varying refractive index,' J. Opt. A, Pure Appl. Opt. 1, L1-L2 (1999). [CrossRef]
  11. T. Khan and H. Jiang, 'A new diffusion approximation to the radiative transfer equation for scattering media with spatially varying refractive indices,' J. Opt. A, Pure Appl. Opt. 5, 137-141 (2003). [CrossRef]
  12. T. Khan and A. Thomas, 'Comparison of PN or spherical harmonics approximation for scattering media with spatially varying and spatially constant refractive indices,' Opt. Commun. 255, 130-166 (2005). [CrossRef]
  13. L. Martí-López, J. Bouza-Domínguez, J. C. Hebden, A. S. R. Arridge, and R. A. Martinéz-Celerio, 'Validity conditions for the radiative transfer equation,' J. Opt. Soc. Am. A 20, 2046-2056 (2003). [CrossRef]
  14. M. Premaratne, E. Premaratne, and A. J. Lowery, 'The photon transport equation for turbid biological media with spatially varying isotropic refractive index,' Opt. Express 13, 389-399 (2005). [CrossRef] [PubMed]
  15. J. Tualle and E. Tenet, 'Derivation of the radiative transfer equation for scattering media with spatially varying refractive index,' Opt. Commun. 228, 33-38 (2003). [CrossRef]
  16. M. L. Shendeleva, 'Radiative transfer in a turbid medium with a varying refractive index: comment,' J. Opt. Soc. Am. A 21, 2464-2467 (2004). [CrossRef]
  17. K. Kline and W. I. Kay, Electromagnetic Theory and Geometrical Optics (Wiley-Interscience, 1965).
  18. G. B. Whitham, Linear and Nonlinear Waves (Wiley-Interscience, 1974).
  19. P. Gérard, P. A. Markowich, N. J. Mauser, and F. Poupaud, 'Homogenization limits and Wigner transforms,' Commun. Pure Appl. Math. 50, 323-380 (1997). [CrossRef]
  20. P.-L. Lions and T. Paul, 'Sur les mesures de Wigner,' Rev. Mat. Iberoam. 9, 553-618 (1993). [CrossRef]
  21. G. Bal, J. B. Keller, G. Papanicolaou, and L. Ryzhik, 'Transport theory for waves with reflection and transmission at interfaces,' Wave Motion 30, 303-327 (1999). [CrossRef]
  22. G. Bal, G. Papanicolaou, and L. Ryzhik, 'Probabilistic theory of transport processes with polarization,' SIAM J. Appl. Math. 60, 1639-1666 (2000). [CrossRef]
  23. J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems (Addison-Wesley, 1969).
  24. G. Bal and M. Moscoso, 'Polarization effects of seismic waves on the basis of radiative transport theory,' Geophys. J. Int. 142, 571-585 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited