OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1645–1656

Modeling radiation characteristics of semitransparent media containing bubbles or particles

Jaona Randrianalisoa, Dominique Baillis, and Laurent Pilon  »View Author Affiliations

JOSA A, Vol. 23, Issue 7, pp. 1645-1656 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modeling of radiation characteristics of semitransparent media containing particles or bubbles in the independent scattering limit is examined. The existing radiative properties models of a single particle in an absorbing medium using the approaches based on (1) the classical Mie theory neglecting absorption by the matrix, (2) the far field approximation, and (3) the near field approximation are reviewed. Comparison between models and experimental measurements are carried out not only for the radiation characteristics but also for hemispherical transmittance and reflectance of porous fused quartz. Large differences are found among the three models predicting the bubble radiative properties when the matrix is strongly absorbing and/or the bubbles are optically large. However, these disagreements are masked by the matrix absorption during calculation of radiation characteristics of the participating medium. It is shown that all three approaches can be used for radiative transfer calculations in an absorbing matrix containing bubbles.

© 2006 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(160.2750) Materials : Glass and other amorphous materials
(260.3060) Physical optics : Infrared
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: November 11, 2005
Manuscript Accepted: December 27, 2005

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Jaona Randrianalisoa, Dominique Baillis, and Laurent Pilon, "Modeling radiation characteristics of semitransparent media containing bubbles or particles," J. Opt. Soc. Am. A 23, 1645-1656 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. L. Marston, 'Light scattering from bubbles in water,' in Procceedings of IEEE Oceans '89 (IEEE, 1989), pp. 1186-1193. [CrossRef]
  2. X. Zhang, M. Lewis, and B. Johnson, 'Influence of bubbles on scattering of light in the ocean,' Appl. Opt. 37, 6525-6536 (1998). [CrossRef]
  3. A. G. Fedorov and L. Pilon, 'Glass foam: formation, transport properties, and heat, mass, and radiation transfer,' J. Non-Cryst. Solids 311, 154-173 (2002).
  4. A. Ungan and R. Viskanta, 'Three-dimensional numerical modeling of circulation and heat transfer in a glass melting tank: Part 1. Mathematical formulation,' Glastech. Ber. 60, 71-78 (1987).
  5. R. Viskanta and P. Mengüç, 'Radiative transfer in dispersed media,' Appl. Mech. Rev. 42, 241-259 (1989). [CrossRef]
  6. D. Baillis and J. F. Sacadura, 'Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization,' J. Quant. Spectrosc. Radiat. Transf. 67, 327-363 (2000). [CrossRef]
  7. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  8. A. G. Fedorov and R. Viskanta, 'Radiation characteristics of glass foams,' J. Am. Ceram. Soc. 83, 2769-2776 (2000). [CrossRef]
  9. L. Pilon and R. Viskanta, 'Apparent radiation characteristics of semitransparent media containing gas bubbles,' in Proceedings of the Twelfth International Heat Transfer Conference, France (Elsevier, 2002), pp. 645-650.
  10. L. A. Dombrovsky, 'The propagation of infrared radiation in a semitransparent liquid containing gas bubbles,' High Temp. 42, 133-139 (2004).
  11. W. C. Mundy, J. A. Roux, and A. M. Smith, 'Mie scattering by spheres in an absorbing medium,' J. Opt. Soc. Am. 64, 1593-1597 (1974). [CrossRef]
  12. P. Chylek, 'Light scattering by small particles in an absorbing medium,' J. Opt. Soc. Am. 67, 561-563 (1977). [CrossRef]
  13. P. Yang, B.-C. Gao, W. J. Wiscombe, M. I. Mishchenko, S. E. Platnick, H.-L. Huang, B. A. Baum, Y. X. Hu, D. M. Winker, S.-C. Tsay, and S. K. Park, 'Inherent and apparent scattering properties of coated or uncoated spheres embedded in an absorbing host medium,' Appl. Opt. 41, 2740-2759 (2002). [CrossRef] [PubMed]
  14. I. W. Sudiarta and P. Chylek, 'Mie-scattering formalism for spherical particle embedded in an absorbing medium,' J. Opt. Soc. Am. A 18, 1275-1278 (2001). [CrossRef]
  15. I. S. Sudiarta and P. Chylek, 'Mie-scattering efficiency of a large spherical particle embedded in an absorbing medium,' J. Quant. Spectrosc. Radiat. Transf. 70, 709-714 (2001). [CrossRef]
  16. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, 'Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,' Eur. Phys. J. D 6, 365-373 (1999).
  17. N. Lebedev and O. Stenzel, 'Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,' Eur. Phys. J. D 7, 83-88 (1999). [CrossRef]
  18. Q. Fu and W. Sun, 'Mie theory for light scattering by a spherical particle in an absorbing medium,' Appl. Opt. 40, 1354-1361 (2001). [CrossRef]
  19. W. Sun, G. N. Loeb, and Q. Fu, 'Light scattering by coated sphere immersed in an absorbing medium: a comparison between the FDTD and analytic solutions,' J. Quant. Spectrosc. Radiat. Transf. 83, 483-492 (2004). [CrossRef]
  20. W. Sun, N. G. Loeb, and Q. Fu, 'Finite-difference time domain solution of light scattering and absorption by particles in an absorbing medium,' Appl. Opt. 41, 5728-5743 (2002). [CrossRef] [PubMed]
  21. S. K. Sharma and A. R. Jones, 'Absorption and scattering of electromagnetic radiation by a large absorbing sphere with highly absorbing spherical inclusions,' J. Quant. Spectrosc. Radiat. Transf. 79-80, 1051-1060 (2003). [CrossRef]
  22. J. Randrianalisoa, D. Baillis, and L. Pilon, 'Improved inverse method for radiative characteristics of closed-cell absorbing porous media,' J. Thermophys. Heat Transfer (to be published).
  23. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993).
  24. H. C. Hottel and A. F. Sarofim, Radiative Transfer (McGraw-Hill, 1967).
  25. M. Q. Brewster, Thermal Radiative Transfer and Properties (Wiley, 1992).
  26. L. A. Dombrovsky, Radiation Heat Transfer in Disperse Systems (Begell, 1996).
  27. H. C. Van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  28. M. Abramowitz, Handbook of Mathematical Functions (Dover, 1970).
  29. R. Coquard and D. Baillis, 'Radiative characteristics of opaque spherical particles beds: a new method of prediction,' J. Thermophys. Heat Transfer 18, 178-186 (2004). [CrossRef]
  30. B. P. Singh and M. Kaviany, 'Independent theory versus direct simulation of radiative transfer in packed beds,' Int. J. Heat Mass Transfer 34, 2869-2882 (1991). [CrossRef]
  31. L. A. Dombrovsky, J. Randrianalisoa, and D. Baillis, 'The use of Mie theory for analyzing experimental data to identify infrared properties of fused quartz containing bubbles,' Appl. Opt. 44, 7021-7031 (2005). [CrossRef] [PubMed]
  32. I. H. Malitson, 'Interspecimen comparison of the refractive index of fused silica,' J. Opt. Soc. Am. 55, 1205-1209 (1965). [CrossRef]
  33. C. Z. Tan, 'Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy,' J. Non-Cryst. Solids 223, 158-163 (1998). [CrossRef]
  34. E. C. Beder, C. D. Bass, and W. L. Shackleford, 'Transmissivity and absorption of fused quartz between 0.2μm and 3.5μm from room temperature to 1500 degree C,' Appl. Opt. 10, 2263-2268 (1971). [CrossRef] [PubMed]
  35. Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties: Nonmetallic Solids, Vol. 8 of Thermophysical Properties of Matter (Plenum, 1972).
  36. D. Baillis, L. Pilon, H. Randrianalisoa, R. Gomez, and R. Viskanta, 'Measurements of radiation characteristics of fused-quartz containing bubbles,' J. Opt. Soc. Am. A 21, 149-159 (2004). [CrossRef]
  37. M. A. Khashan and A. Y. Nassif, 'Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2-3μm,' Opt. Commun. 188, 129-139 (2001). [CrossRef]
  38. D. Baillis and J. F. Sacadura, 'Identification of polyurethane foam radiative properties--influence of transmittance measurements number,' J. Thermophys. Heat Transfer 16, 200-206 (2002). [CrossRef]
  39. V. P. Nicolau, M. Raynaud, and J. F. Sacadura, 'Spectral radiative properties identification of fiber insulating materials,' Int. J. Heat Mass Transfer 37, 311-324 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited