OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1669–1677

Minimum-phase-function-based processing in frequency-domain optical coherence tomography systems

Aydogan Ozcan, Michel J.F. Digonnet, and Gordon S. Kino  »View Author Affiliations


JOSA A, Vol. 23, Issue 7, pp. 1669-1677 (2006)
http://dx.doi.org/10.1364/JOSAA.23.001669


View Full Text Article

Enhanced HTML    Acrobat PDF (1199 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple processing technique that uses the concept of minimum-phase functions to improve frequency-domain optical coherence tomography systems. Our approach removes the autocorrelation noise and therefore increases both the accessible depth range and the recovery accuracy. To our knowledge, this is the first time that the concept of minimum-phase functions has been applied to improve optical coherence tomography.

© 2006 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 25, 2005
Revised Manuscript: January 10, 2006
Manuscript Accepted: February 1, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Aydogan Ozcan, Michel J. F. Digonnet, and Gordon S. Kino, "Minimum-phase-function-based processing in frequency-domain optical coherence tomography systems," J. Opt. Soc. Am. A 23, 1669-1677 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-7-1669


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Asakura, International Trends in Optics and Photonics ICO IV,(Springer-Verlag, 1999), pp. 359-389.
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, 'Optical coherence tomography,' Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  3. J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, 'Optical biopsy and imaging using optical coherence tomography,' Nat. Med. (N.Y.) 1, 970-972 (1995).
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, 'Measurement of intraocular distances by backscattering spectral interferometry,' Opt. Commun. 117, 43-48 (1995). [CrossRef]
  5. M. W. Lindner, P. Andretzky, F. Kiesewetter, and G. Hausler, 'Spectral radar: optical coherence tomography in the Fourier domain,' in Handbook of Optical Coherence Tomography, B.E.Bouma and G.T.Tearney, eds. (Marcel Dekker, 2001), Chap. 12.
  6. M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, 'In vivo human retinal imaging by Fourier domain optical coherence tomography,' J. Biomed. Opt. 7, 457-463 (2003). [CrossRef]
  7. R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, 'Performance of Fourier domain vs. time domain optical coherence tomography,' Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  8. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, 'Sensitivity advantage of swept source and Fourier domain optical coherence tomography,' Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  9. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, 'Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency domain optical coherence tomography,' Opt. Lett. 28, 2201-2203 (2003). [CrossRef] [PubMed]
  10. R. A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. F. Fercher, 'Ultrahigh resolution Fourier domain optical coherence tomography,' Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  11. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, 'Optical coherence tomography--principles and applications,' Rep. Prog. Phys. 66, 293-303 (2003).
  12. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice Hall, 2002), Chap. 7.
  13. T. F. Quatieri, Jr. and A. V. Oppenheim, 'Iterative techniques for minimum phase signal reconstruction from phase or magnitude,' IEEE Trans. Acoust., Speech, Signal Process. 29, 1187-1193 (1981). [CrossRef]
  14. M. Hayes, J. S. Lim, and A. V. Oppenheim, 'Signal reconstruction from phase or magnitude,' IEEE Trans. Acoust., Speech, Signal Process. 28, 672-680 (1980). [CrossRef]
  15. J. R. Fienup, 'Reconstruction of an object from the modulus of its Fourier transform,' Opt. Lett. 3, 27-29 (1978). [CrossRef] [PubMed]
  16. R. W. Gerchberg and W. O. Saxton, 'Practical algorithm for the determination of phase from image and diffraction plane pictures,' Optik (Stuttgart) 35, 237-246 (1972).
  17. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, 'Iterative processing of second-order optical nonlinearity depth profiles,' Opt. Express 12, 3367-3376 (2004). [CrossRef] [PubMed]
  18. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, 'Group delay recovery using iterative processing of amplitude of transmission spectra of fibre Bragg gratings,' Electron. Lett. 40, 1104-1106 (2004). [CrossRef]
  19. J. M. Schmitt, S. H. Xiang, and K. M. Yung, 'Speckle in optical coherence tomography,' J. Biomed. Opt. 4, 95-105 (1999). [CrossRef]
  20. J. M. Schmitt, 'Optical coherence tomography: a review,' IEEE J. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  21. N. Nakajima, 'Improvement in evaluating the logarithmic Hilbert transform in phase retrieval,' Opt. Lett. 11, 600-602 (1986). [CrossRef] [PubMed]
  22. M. A. Muriel and A. Carballar, 'Phase reconstruction from reflectivity in uniform fiber Bragg gratings,' Opt. Lett. 22, 93-95 (1997). [CrossRef] [PubMed]
  23. Digital Signal Processing Committee, Programs for Digital Signal Processing (IEEE, 1979).
  24. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, 'Characterization of fiber Bragg gratings using spectral interferometry based on minimum-phase functions,' J. Lightwave Technol. 24, 1739-1757 (2006). [CrossRef]
  25. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, 'A new iterative technique to characterize and design transmission fiber Bragg gratings,' J. Lightwave Technol. 24, 1913-1921 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited