OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1708–1717

Point-spread function synthesis in scanning holographic microscopy

Guy Indebetouw, Wenwei Zhong, and David Chamberlin-Long  »View Author Affiliations

JOSA A, Vol. 23, Issue 7, pp. 1708-1717 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (436 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Scanning holographic microscopy is a two-pupil synthesis method allowing the capture of single-sideband in-line holograms of noncoherent (e.g., fluorescent) three-dimensional specimens in a single two-dimensional scan. The flexibility offered by the two-pupil method in synthesizing unusual point-spread functions is discussed. We illustrate and compare three examples of holographic recording, using computer simulations. The first example is the classical hologram in which each object point is encoded as a spherical wave. The second example uses pupils with spherical phase distributions having opposite curvatures, leading to reconstructed images with a resolution limit that is half that of the objective. In the third example, axicon pupils are used to obtain axially sectioned images.

© 2006 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(110.0180) Imaging systems : Microscopy
(110.4850) Imaging systems : Optical transfer functions
(110.6880) Imaging systems : Three-dimensional image acquisition

ToC Category:

Original Manuscript: September 16, 2005
Manuscript Accepted: December 23, 2005

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Guy Indebetouw, Wenwei Zhong, and David Chamberlin-Long, "Point-spread function synthesis in scanning holographic microscopy," J. Opt. Soc. Am. A 23, 1708-1717 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, 'A new microscopic principle,' Nature 161, 777-778 (1948). [CrossRef] [PubMed]
  2. E. N. Leith and J. Upatnieks, 'Reconstructed wavefronts and communication theory,' J. Opt. Soc. Am. 52, 1123-1130 (1962). [CrossRef]
  3. J. W. Goodman and R. W. Lawrence, 'Digital image information from electronically detected holograms,' Appl. Phys. Lett. 11, 77-79 (1967). [CrossRef]
  4. U. Schnars and W. P. O. Juptner, 'Digital recording and numerical reconstruction of holograms,' Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  5. E. Cuche, P. Poscio, and C. Depeursinge, 'Optical tomography at the microscopic scale by means of a numerical low-coherence holographic technique,' in Optical and Imaging Techniques for Biomonitoring II, H.J.Foth, R.Marchesini, and H.Podbielska, eds., Proc. SPIE 2927, 61-66 (1996).
  6. W. Xu, M. H. Jerico, I. A. Meinertzhagen, and H. J. Kreuzer, 'Digital in-line holography for biological applications,' Proc. Natl. Acad. Sci. USA 98, 11301-11305 (2002). [CrossRef]
  7. E. Cuche, F. Bevilacqua, and C. Depeursinge, 'Digital holography for quantitative phase-contrast imaging,' Opt. Lett. 24, 291-293 (1999). [CrossRef]
  8. S. Grilli, P. Ferraro, S. De Nicola, G. Pierattini, and R. Meucci, 'Whole optical wavefields reconstruction by digital holography,' Opt. Express 9, 294-302 (2001). [CrossRef] [PubMed]
  9. G. Indebetouw and W. Zhong, 'Scanning holographic microscopy of three-dimensional fluorescent specimens,' J. Opt. Soc. Am. A 23, 1699-1707 (2006). [CrossRef]
  10. W. Lukosz, 'Properties of linear low-pass filters for nonnegative signals,' J. Opt. Soc. Am. 52, 827-829 (1962). [CrossRef]
  11. A. W. Lohmann and W. T. Rhodes, 'Two-pupil synthesis of optical transfer functions,' Appl. Opt. 17, 1141-1151 (1978). [CrossRef] [PubMed]
  12. W. Stoner, 'Incoherent optical processing via spatially offset pupil masks,' Appl. Opt. 17, 2454-2467 (1978). [CrossRef] [PubMed]
  13. T.-C. Poon and A. Korpel, 'Optical transfer function of an acousto-optic heterodyning image processor,' Opt. Lett. 4, 317-319 (1979). [CrossRef] [PubMed]
  14. T.-C. Poon, 'Scanning holography and two-dimensional image processing by acousto-optic two-pupil synthesis,' J. Opt. Soc. Am. A 2, 521-527 (1985). [CrossRef]
  15. G. Indebetouw, P. Klysubun, T. Kim, and T.-C. Poon, 'Imaging properties of scanning holographic microscopy,' J. Opt. Soc. Am. A 17, 380-390 (2000). [CrossRef]
  16. G. Indebetouw, 'Properties of a scanning holographic microscope: improved resolution, extended depth of focus, and/or optical sectioning,' J. Mod. Opt. 49, 1479-1500 (2002). [CrossRef]
  17. B. Schilling, T.-C. Poon, G. Indebetouw, B. Storie, K. Shinoda, and M. Wu, 'Three-dimensional holographic fluorescence microscopy,' Opt. Lett. 22, 1506-1508 (1997). [CrossRef]
  18. G. Indebetouw, A. El Maghnouji, and R. Foster, 'Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus,' J. Opt. Soc. Am. A 22, 829-898 (2005). [CrossRef]
  19. E. R. Dowski and W. T. Cathey, 'Extended depth of field through wave-front coding,' Appl. Opt. 34, 1859-1866 (1995). [CrossRef] [PubMed]
  20. D. A. Agard, 'Optical sectioning microscopy: cellular architecture in three dimensions,' Annu. Rev. Biophys. Bioeng. 13, 191-219 (1984). [CrossRef] [PubMed]
  21. A.Diaspro, ed., Confocal and Two-Photon Microscopy: Foundations, Applications, and Advances (Wiley-Liss, 2002).
  22. T.Wilson, ed., Confocal Microscopy (Academic, 1990).
  23. M. A. A. Neil, R. Juskaitis, and T. Wilson, 'Real time 3D fluorescence microscopy by two beam interference illumination,' Opt. Commun. 153, 1-4 (1998). [CrossRef]
  24. C. W. Mc Cutchen, 'Generalized aperture and the three-dimensional diffraction image,' J. Opt. Soc. Am. 54, 240-244 (1964). [CrossRef]
  25. W. Wang, A. T. Friberg, and E. Wolf, 'Structure of focused fields in systems with large Fresnel numbers,' J. Opt. Soc. Am. A 12, 1947-1953 (1995). [CrossRef]
  26. D. S. C. Biggs, 'Clearing up deconvolution,' Biophotonics Int. 11, 32-36 (2004).
  27. P. J. Shaw, 'Comparison of wide-field/deconvolution and confocal microscopy,' in Handbook of Biological Confocal Microscopy, 2nd ed., J.B.Pawley, ed. (Plenum, 1995), pp. 373-387.
  28. J. H. McLeod, 'The axicon: a new type of optical element,' J. Opt. Soc. Am. 44, 592-597 (1955). [CrossRef]
  29. J. H. McLeod, 'Axicons and their uses,' J. Opt. Soc. Am. 50, 166-169 (1960). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited