OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1746–1750

Application of the Jones calculus for Gaussian beams in uniaxial crystals

Marek Izdebski and Włodzimierz Kucharczyk  »View Author Affiliations


JOSA A, Vol. 23, Issue 7, pp. 1746-1750 (2006)
http://dx.doi.org/10.1364/JOSAA.23.001746


View Full Text Article

Enhanced HTML    Acrobat PDF (79 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Following our recent approach in which the Jones matrix calculus was applied to a modulated double-refracted and partially interfering light beam propagating in a homogeneous electro-optic crystal [ J. Opt. Soc. Am. A 21, 132 (2004) ], we generalize the method for any distribution of the light intensity. Special attention is paid to Gaussian, flat-topped Gaussian, and quasi-Gaussian beams for which the intensity of the light emerging from the optical system is found analytically. Application of the method to an optical system with an electro-optic crystal is described.

© 2006 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(080.2730) Geometric optics : Matrix methods in paraxial optics
(160.2100) Materials : Electro-optical materials
(160.4760) Materials : Optical properties
(260.1180) Physical optics : Crystal optics
(260.1440) Physical optics : Birefringence

ToC Category:
Physical Optics

History
Original Manuscript: October 28, 2005
Manuscript Accepted: January 24, 2006

Citation
Marek Izdebski and Wlodzimierz Kucharczyk, "Application of the Jones calculus for Gaussian beams in uniaxial crystals," J. Opt. Soc. Am. A 23, 1746-1750 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-7-1746


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Jones, 'A new calculus for the treatment of optical systems. I. Description and discussion of the calculus,' J. Opt. Soc. Am. 31, 488-493 (1941). [CrossRef]
  2. R. C. Jones, 'A new calculus for the treatment of optical systems. IV,' J. Opt. Soc. Am. 32, 486-493 (1942). [CrossRef]
  3. R. C. Jones, 'A new calculus for the treatment of optical systems. V. A more general formulation, and description of another calculus,' J. Opt. Soc. Am. 37, 107-110 (1947). [CrossRef]
  4. M. Izdebski, W. Kucharczyk, and R. E. Raab, 'Application of the Jones calculus for a modulated double-refracted light beam propagating in a homogeneous and nondepolarizing electro-optic uniaxial crystal,' J. Opt. Soc. Am. A 21, 132-139 (2004). [CrossRef]
  5. I. Scierski and F. Ratajczyk, 'The Jones matrix of the real dichroic elliptic object,' Optik (Stuttgart) 68, 121-125 (1984).
  6. C. G. Chen, P. T. Konkola, J. Ferrera, R. K. Heilmann, and M. L. Schattenburg, 'Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations,' J. Opt. Soc. Am. A 19, 404-412 (2002). [CrossRef]
  7. A. Ciattoni, B. Crosignani, and P. Di Porto, 'Vectorial theory of propagation in uniaxially anisotropic media,' J. Opt. Soc. Am. A 18, 1656-1661 (2001). [CrossRef]
  8. J. J. Stamnes and V. Dhayalan, 'Transmission of a two-dimensional Gaussian beam into a uniaxial crystal,' J. Opt. Soc. Am. A 18, 1662-1669 (2001). [CrossRef]
  9. M. C. Simon, 'Ray tracing formulas for monoaxial optical components,' Appl. Opt. 22, 354-360 (1983). [CrossRef] [PubMed]
  10. M. C. Simon and R. M. Echarri, 'Ray tracing formulas for monoaxial optical components: vectorial formulation,' Appl. Opt. 25, 1935-1939 (1986). [CrossRef] [PubMed]
  11. F. Gori, 'Flattened Gaussian beams,' Opt. Commun. 107, 335-341 (1994). [CrossRef]
  12. Y. Li, 'New expressions for flat-topped light beams,' Opt. Commun. 206, 225-234 (2002). [CrossRef]
  13. Y. Li, H. Lee, and E. Wolf, 'New generalized Bessel-Gaussian beams,' J. Opt. Soc. Am. A 21, 640-646 (2004). [CrossRef]
  14. M. Izdebski, W. Kucharczyk, and R. E. Raab, 'Effect of beam divergence from the optic axis in an electro-optic experiment to measure an induced Jones birefringence,' J. Opt. Soc. Am. A 18, 1393-1398 (2001). [CrossRef]
  15. M. Izdebski, W. Kucharczyk, and R. E. Raab, 'Analysis of accuracy of measurement of quadratic electro-optic coefficients in uniaxial crystals: a case study of KDP,' J. Opt. Soc. Am. A 19, 1417-1421 (2002). [CrossRef]
  16. R. Ledzion, K. Bondarczuk, and W. Kucharczyk, 'Temperature dependence of the quadratic electrooptic effect and estimation of antipolarization of ADP,' Cryst. Res. Technol. 39, 161-164 (2004). [CrossRef]
  17. T. A. Maldonaldo and T. K. Gaylord, 'Electrooptic effect calculations: simplified procedure for arbitrary cases,' Appl. Opt. 27, 5051-5066 (1988). [CrossRef]
  18. M. Izdebski and W. Kucharczyk, 'On the indirect electro-optic modulation in noncentrosymmetric uniaxial crystals,' J. Opt. A, Pure Appl. Opt. 7, 204-206 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited