OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1768–1778

Resolution of negative-index slabs

Christian Hafner, Cui Xudong, and Rüdiger Vahldieck  »View Author Affiliations


JOSA A, Vol. 23, Issue 7, pp. 1768-1778 (2006)
http://dx.doi.org/10.1364/JOSAA.23.001768


View Full Text Article

Enhanced HTML    Acrobat PDF (969 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Different definitions of the resolution of negative-index-material (NIM) slabs and classical optical lenses with magnification 1 are presented and evaluated for both cases. Several numerical codes—based on domain and boundary discretizations and working in the time and frequency domains—are applied and compared. It is shown that superresolution depends very much on the definition of resolution and that it may be obtained not only for NIM slabs but also for highly refracting classical lenses when the distances of the image and source points from the surface of the lens or slab are shorter than the wavelength.

© 2006 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(220.3630) Optical design and fabrication : Lenses

ToC Category:
Materials

History
Original Manuscript: October 28, 2005
Revised Manuscript: December 16, 2005
Manuscript Accepted: December 20, 2005

Citation
Christian Hafner, Cui Xudong, and Rüdiger Vahldieck, "Resolution of negative-index slabs," J. Opt. Soc. Am. A 23, 1768-1778 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-7-1768


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, 'The electrodynamics of substances with simultaneous negative values of epsilon and μ,' Sov. Phys. Usp. 10, 509-514 (1968). [CrossRef]
  2. J. B. Pendry, 'Negative refraction makes a perfect lens,' Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, 'Experimental verification of a negative index of refraction,' Science 292, 77-79 (2001). [CrossRef] [PubMed]
  4. J.-S. Lih, Y.-S. Wang, M.-C. Lu, Y.-C. Huang, K.-H. Chen, J.-L. Chern, and L.-E. Li, 'Experimental realization of breaking diffraction limit by planar negative-index metematerials in free space,' Europhys. Lett. 69, 544-548 (2005). [CrossRef]
  5. Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, 'Three-dimensional photonic crystal flat lens by full 3D negative refraction,' Opt. Express 13, 5592-5599 (2005). [CrossRef] [PubMed]
  6. J. L. Garcia-Pomar and M. Nieto-Vesperinas, 'Imaging of extended objects by a negative refractive index slab,' New J. Phys. 7, 160 (2005); http://www.njp.org. [CrossRef]
  7. Viktor A. Podolskiy and Evgenii E. Narimanov, 'Near-sighted superlens,' Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  8. N. Garcia and M. Nieto-Vesperinas, 'Is there an experimental verification of a negative index of refraction yet?' Opt. Lett. 27, 885-887 (2002). [CrossRef]
  9. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, 'Metrics for negative-refractive-index materials,' Phys. Rev. E 70, 035602 (2004). [CrossRef]
  10. M. Nieto-Vesperinas, 'Problem of image superresolution with a negative-refractive-index slab,' J. Opt. Soc. Am. A 21, 491-498 (2004). [CrossRef]
  11. D. O. S. Melville and R. J. Blaikie, 'Near-field optical lithography using a planar silver lens,' J. Vac. Sci. Technol. B 22, 3470-3474 (2004). [CrossRef]
  12. N. Fang, H. Lee, C. Sun, and X. Zhang, 'Sub-diffraction-limited optical imaging with a silver superlens,' Science 308, 534-537 (2005). [CrossRef] [PubMed]
  13. J. L. Garcia-Pomar and M. Nieto-Vesperinas, 'Waveguiding, collimation and wavelength concentration in photonic crystals,' Opt. Express 13, 7997-8007 (2005). [CrossRef] [PubMed]
  14. D. A. Fletcher, K. E. Goodson, and G. S. Kino, 'Focusing in microlens close to a wavelength in diameter,' Opt. Lett. 26, 399-401 (2001). [CrossRef]
  15. http://www.remcom.com/xfdtd6/index.html.
  16. http://www.optiwave.com/2005/products/optifdtd/index.html.
  17. http://www.empire.de.
  18. http://www.cst.de/Content/Products/MWS/Overview.aspx.
  19. P. F. Loschialpo, D. W. Forester, D. L. Smith, and F. J. Rachford, 'Optical properties of an ideal homogeneous causal left-handed material slab,' Phys. Rev. E 70, 036605 (2004). [CrossRef]
  20. P. M. So, H. Du, and W. J. R. Hoefer, 'Modeling of metamaterials with negative refractive index using 2-D shunt and 3-D SCN TLM networks,' IEEE Trans. Microwave Theory Tech. 53, 1496-1505 (2005). [CrossRef]
  21. http://www.ansoft.com/products/hf/hfss/.
  22. http://www.comsol.com/products/.
  23. http://www.mathworks.com/.
  24. J. L. Garcia-Pomar and M. Nieto-Vesperinas, 'Transmission study of prisms and slabs of lossy negative index media,' Opt. Express 12, 2081-2095 (2004). [CrossRef] [PubMed]
  25. Ch. Hafner, Post-modern Electromagnetics: Using Intelligent Maxwell Solvers (Wiley, 1999).
  26. Ch. Hafner, MAX-1, a Visual Electromagnetics Platform for PCs (Wiley, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited