OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1787–1795

Trade-offs between lens complexity and real estate utilization in a free-space multichip global interconnection module

Predrag Milojkovic, Marc P. Christensen, and Michael W. Haney  »View Author Affiliations

JOSA A, Vol. 23, Issue 7, pp. 1787-1795 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The FAST-Net ( F ree-space A ccelerator for S witching T erabit Net works) concept uses an array of wide-field-of-view imaging lenses to realize a high-density shuffle interconnect pattern across an array of smart-pixel integrated circuits. To simplify the optics we evaluated the efficiency gained in replacing spherical surfaces with aspherical surfaces by exploiting the large disparity between narrow vertical cavity surface emitting laser (VCSEL) beams and the wide field of view of the imaging optics. We then analyzed trade-offs between lens complexity and chip real estate utilization and determined that there exists an optimal numerical aperture for VCSELs that maximizes their area density. The results provide a general framework for the design of wide-field-of-view free-space interconnection systems that incorporate high-density VCSEL arrays.

© 2006 Optical Society of America

OCIS Codes
(080.1010) Geometric optics : Aberrations (global)
(200.2610) Optics in computing : Free-space digital optics
(200.4650) Optics in computing : Optical interconnects

ToC Category:
Optical Computing

Original Manuscript: August 26, 2005
Revised Manuscript: December 14, 2005
Manuscript Accepted: December 16, 2005

Predrag Milojkovic, Marc P. Christensen, and Michael W. Haney, "Trade-offs between lens complexity and real estate utilization in a free-space multichip global interconnection module," J. Opt. Soc. Am. A 23, 1787-1795 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. Kiamilev, L. Yue, and M. Hibbs-Brenner, 'Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,' Appl. Opt. 38, 6190-6200 (1999). [CrossRef]
  2. M. W. Haney, M. P. Christensen, P. Milojkovic, G. J. Fokken, M. Vickberg, B. K. Gilbert, J. Rieve, J. Ekman, P. Chandramani, and F. Kiamilev, 'Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype,' Proc. IEEE 88, 819-828 (2000). [CrossRef]
  3. M. W. Haney and M. P. Christensen, 'Performance scaling comparison for free space optical and electrical interconnection approaches,' Appl. Opt. 37, 2886-2894 (1998). [CrossRef]
  4. R. R. Michael, M. P. Christensen, and M. W. Haney, 'Experimental evaluation of the 3-D optical shuffle interconnection module of the sliding banyan network,' J. Lightwave Technol. 9, 1970-1978 (1996). [CrossRef]
  5. D. T. Nielson and C. P. Barrett, 'Performance trade-offs for conventional lenses for free-space digital optics,' Appl. Opt. 35, 1240-1248 (1996). [CrossRef]
  6. A. G. Kirk, D. Plant, M. Ayliffe, M. Chateauneuf, and F. Lacroix, 'Design rules for highly parallel free-space optical interconnects,' IEEE J. Sel. Top. Quantum Electron. 9, 531-547 (2003). [CrossRef]
  7. D. R. Rolston, B. Robertson, H. S. Hinton, and D. V. Plant, 'Analysis of a microchannel interconnect based on the clustering of smart-pixel-device windows,' Appl. Opt. 35, 1220-1233 (1996). [CrossRef] [PubMed]
  8. G. Schulz, 'Imaging performance of aspherics in comparison with spherical surfaces,' Appl. Opt. 26, 5118-5124 (1987). [CrossRef] [PubMed]
  9. G. Shulz, 'Aberration-free imaging of large fields with thin pencils,' Opt. Acta 32, 1361-1371 (1985). [CrossRef]
  10. OSLO SIX, Sinclair Optics, 6780 Palmyra Road, Fairport, New York 14450.
  11. P. Milojkovic, M. P. Christensen, and M. W. Haney, 'Minimum lens complexity design approach for a free-space macro-optical multi-chip global interconnection module,' presented at the Optics in Computing 2000 Conference, Quebec City, Canada, June 18-23, 2000.
  12. T. E. Sale, Vertical Cavity Surface Emitting Lasers (Wiley, 1995), pp. 23, 24.
  13. E. Towe, ed., Heterogeneous Optical Integration (SPIE, 2000), Chap. 4.
  14. M. Christensen, P. Milojkovic, and M. W. Haney, 'Multi-scale optical design for global chip-to-chip optical interconnections and misalignment tolerant packaging,' IEEE J. Sel. Top. Quantum Electron. 9, 548-556 (2003). [CrossRef]
  15. C. Gimkiewicz and J. Jahns, 'Air cooling of a VCSEL diode array on quartz,' 1998, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb98/CG3.pdf.
  16. C. Gimkiewicz, G. Grabosch, D. Hagedorn, and J. Jahns, 'Cooling of laser diode arrays in planar optical systems,' 2000, http://www.fernuni-hagen.de/ONT/Forschungsinhalt/jb00/Cooling.pdf.
  17. M. Miller and I. Kardosh, 'Improved output performance of high-power VCSELs,' Annual Report 2001, OptoelectronicsDepartment, University of Ulm, www.opto.e-technik.uni-ulm.de/forschung/jahresbericht/2001/ar01mim.pdf.
  18. D. Francis, H. L. Chen, W. Yuen, G. Li, and C. Chang-Hasnain, 'Monolithic 2-D VCSEL array with >2 W CW and >5 W pulsed power,' Electron. Lett. 34, 2132-2133 (1998). [CrossRef]
  19. Y. Liu, 'Heterogeneous integration of optoelectronic element arrays with Si electronics and micro-optics,' IEEE Trans. Adv. Packag. 25, 43-49 (2002). [CrossRef]
  20. K. L. Lear, R. P. Schneider, Jr., K. D. Choquette, and S. P. Kilcoyne, 'Index guiding dependent effects in implant and oxide confined vertical-cavity lasers,' IEEE Photon. Technol. Lett. 8, 740-742 (1996). [CrossRef]
  21. J. Lehman, 'Honeywell advanced photonics development overview,' presented at the 2nd Workshop on Optical Read-out Technologies for ATLAS Oxford, UK, January 7, 1999; www.cern.ch/Atlas/GROUPS/FRONTEND/links/oxford_wkshp/honeywell.ppt.
  22. C. Wilmsen, H. Temkin, and L. Coldren, eds. Vertical-Cavity Surface-Emitting Lasers (Cambridge U. Press, 1999), p. 222.
  23. This is not taken directly from any particular VCSEL data sheet (it is just a convenient starting point for calculations), but there are a number of VCSEL products that have specs that approximately match this assumption. For example, see http://www.ulm-photonics.de/docs/pdfs/17032003/VCSEL-ULM-5G-1x1-chip.pdf.
  24. J. Eckman and X. Wang, University of Delaware, private communication (January 2004).
  25. L. A. Coldren, Y. A. Akulova, E. M. Strzelecka, B. J. Thibeault, J. C. Ko, and D. A. Louderback, 'VCSEL array packaging for free space interconnects,' Report 1996-97 for MICRO Project 96-050, UCSB Santa Barbara Research Center.
  26. Yongqi Fu and Ngoi Kok Ann Bryan, 'Investigation of hybrid microlens integration with vertical cavity surface-emitting lasers for free-space optical links,' Opt. Express 10, 413-418 (2002).
  27. S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, 'Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,' IEEE Photon. Technol. Lett. 12, 459-461 (2000). [CrossRef]
  28. Yongqi Fu, 'Integration of microdiffractive lens with continuous relief with vertical-cavity surface-emitting lasers using focused ion beam direct milling,' IEEE Photon. Technol. Lett. 13, 424-426 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited