OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1884–1888

Transformation of radially traveling cylindrical waves between two skew cylindrical coordinate systems

Ioannis D. Chremmos and Nikolaos K. Uzunoglu  »View Author Affiliations


JOSA A, Vol. 23, Issue 8, pp. 1884-1888 (2006)
http://dx.doi.org/10.1364/JOSAA.23.001884


View Full Text Article

Enhanced HTML    Acrobat PDF (124 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The transformation of radially traveling cylindrical waves between two cylindrical coordinate systems with skew (nonparallel) axes is derived for the first time to our knowledge. The analytical procedure is based on the complex integral representation of the Hankel function and appropriate contour deformation and change of variables to obtain a final Fourier transform expression of the cylindrical wave in the new system. Scalar and vector waves are considered. This new result is a powerful tool for the rigorous analysis of scattering and coupling in nonparallel optical fiber configurations.

© 2006 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.3870) General : Mathematics
(070.2590) Fourier optics and signal processing : ABCD transforms
(350.6980) Other areas of optics : Transforms
(350.7420) Other areas of optics : Waves

ToC Category:
Fourier Optics and Optical Signal Processing

History
Original Manuscript: November 14, 2005
Revised Manuscript: January 8, 2006
Manuscript Accepted: January 13, 2006

Citation
Ioannis D. Chremmos and Nikolaos K. Uzunoglu, "Transformation of radially traveling cylindrical waves between two skew cylindrical coordinate systems," J. Opt. Soc. Am. A 23, 1884-1888 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-8-1884


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U. Press, 1966).
  2. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  3. A. L. Jones, "Coupling of optical fibers and scattering in fibers," J. Opt. Soc. Am. 55, 261-271 (1965). [CrossRef]
  4. W. Wijngaard, "Guided normal modes of two parallel circular dielectric rods," J. Opt. Soc. Am. 63, 944-950 (1973). [CrossRef]
  5. A. Z. Elsherbeni and A. A. Kishk, "Modeling of cylindrical objects by circular dielectric and conducting cylinders," IEEE Trans. Antennas Propag. 40, 96-99 (1992). [CrossRef]
  6. A. A. Kishk, R. P. Parrikar, and A. Z. Elsherbeni, "Electromagnetic scattering from an eccentric multilayered circular cylinder," IEEE Trans. Antennas Propag. 40, 295-303 (1992). [CrossRef]
  7. W. C. Chew, L. Gurel, Y. M. Wang, G. Otto, R. L. Wagner, and Q. H. Liu, "A generalized recursive algorithm for wave-scattering solutions in two dimensions," IEEE Trans. Microwave Theory Tech. 40, 716-723 (1992). [CrossRef]
  8. D. Felbacq, G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A 11, 2526-2538 (1994). [CrossRef]
  9. K. M. Lo, R. C. McPhedran, I. M. Bassett, and G. W. Milton, "An electromagnetic theory of dielectric waveguides with multiple embedded cylinders," J. Lightwave Technol. 12, 396-410 (1994). [CrossRef]
  10. C. Chang and H. Chang, "Theory of the circular harmonics expansion method for multiple-optical-fiber system," J. Lightwave Technol. 12, 415-417 (1994). [CrossRef]
  11. L. C. Botten, N. A. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M. de Sterke, and P. A. Robinson, "Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method," J. Opt. Soc. Am. A 17, 2165-2176 (2000). [CrossRef]
  12. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  13. E. G. Alivizatos, I. D. Chremmos, N. L. Tsitsas, and N. K. Uzunoglu, "Green's function method for the analysis of propagation in holey fibers," J. Opt. Soc. Am. A 21, 847-857 (2004). [CrossRef]
  14. N. K. Uzunoglu and P. A. Mandis, "Analysis of the coupling of two non-parallel dielectric rod waveguides," Int. J. Infrared Millim. Waves 8, 535-547 (1987). [CrossRef]
  15. T. A. Birks, J. C. Knight, and T. E. Dimmick, "High-resolution measurement of the fiber diameter variations using whispering gallery modes and no optical alignment," IEEE Photon. Technol. Lett. 12, 182-183 (2000). [CrossRef]
  16. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1972).
  17. C. T. Tai, Dyadic Green Functions in Electromagnetic Theory (IEEE Press, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited