OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1937–1945

Perturbation approach to the time-resolved transmittance for a spatially varying scattering inclusion in a diffusive slab

Rosario Esposito, Sergio De Nicola, Maria Lepore, and Pietro Luigi Indovina  »View Author Affiliations

JOSA A, Vol. 23, Issue 8, pp. 1937-1945 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the framework of the perturbation approach to the diffusion equation, an analytical expression is derived to describe the effects on the time-resolved transmittance due to the presence of a spatially varying scattering inclusion hidden inside a diffusive slab. This formula assumes that the reduced scattering coefficient of the inclusion is spatially Gaussian distributed and complements that obtained for the absorptive case. The accuracy and the application range of the perturbed transmittance are investigated through comparisons with the numerical solutions of the time-dependent diffusion equation given by using the finite-element method. The proposed perturbation model is validated through a fitting procedure that determines the relative error in retrieving the scattering perturbation parameter of the inclusion located at the midplane of the slab.

© 2006 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1990) Scattering : Diffusion
(290.7050) Scattering : Turbid media

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 9, 2005
Revised Manuscript: February 16, 2006
Manuscript Accepted: February 16, 2005

Virtual Issues
Vol. 1, Iss. 9 Virtual Journal for Biomedical Optics

Rosario Esposito, Sergio De Nicola, Maria Lepore, and Pietro Luigi Indovina, "Perturbation approach to the time-resolved transmittance for a spatially varying scattering inclusion in a diffusive slab," J. Opt. Soc. Am. A 23, 1937-1945 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Xu, B. W. Pogue, H. Dehghani, K. D. Paulsen, R. Springett, and J. F. Dunn, "Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography," Opt. Lett. 29, 2043-2045 (2004). [CrossRef] [PubMed]
  2. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, "Frequency-domain optical mammography: edge effect corrections," Med. Phys. 23, 149-157 (1996). [CrossRef] [PubMed]
  3. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, M. Seeber, P. M. Schlag, and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Natl. Acad. Sci. U.S.A. 94, 6468-6473 (1997). [CrossRef] [PubMed]
  4. B. Pogue, M. Testorf, T. McBride, U. Osterberg, and K. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997). [CrossRef] [PubMed]
  5. G. Mitic, J. G. Koelzer, J. Otto, E. Plies, G. Soelkner, and W. Zinth, "Time-resolved transillumination of turbid media," in Proc. SPIE 2082, 26-32 (1994). [CrossRef]
  6. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999). [CrossRef]
  7. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Noninvasive absorption and scattering spectroscopy of bulk diffusive media: an application to the optical characterization of human breast," Appl. Phys. Lett. 74, 874-876 (1999). [CrossRef]
  8. A. Pifferi, P. Taroni, A. Torricelli, F. Messina, R. Cubeddu, and G. Danesini, "Four-wavelength time-resolved optical mammography in the 680-980-nm range," Opt. Lett. 28, 1138-1140 (2003). [CrossRef] [PubMed]
  9. D. Grosenick, K. T. Moesta, H. Wabnitz, J. Mucke, C. Stroszczynski, R. Macdonald, P. M. Schlag, and H. Rinneberg, "Time-domain optical mammography: initial clinical results on detection and characterization of breast tumors," Appl. Opt. 42, 3170-3186 (2003). [CrossRef] [PubMed]
  10. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, "Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-391 (2000). [PubMed]
  11. A. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A. Berger, D. Hsiang, J. Butler, R. Holcombe, and B. Tromberg, "Spectroscopy enhances the information content of optical mammography," J. Biomed. Opt. 7, 60-71 (2002). [CrossRef] [PubMed]
  12. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, "Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-552 (2004). [CrossRef] [PubMed]
  13. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, "Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography," J. Biomed. Opt. 9, 1137-1142 (2004). [CrossRef] [PubMed]
  14. J. C. Hebden, H. Veenstra, H. Dehghani, H. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278-3287 (2001). [CrossRef]
  15. U. Hampel, E. Schleicher, and R. Freyer, "Volume image reconstruction for diffuse optical tomography," Appl. Opt. 41, 3816-3826 (2002). [CrossRef] [PubMed]
  16. Y. Xu, X. Gu, T. Khan, and H. Jiang, "Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data," Appl. Opt. 41, 5427-5437 (2002). [CrossRef] [PubMed]
  17. T. Yates, J. C. Hebden, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005). [CrossRef] [PubMed]
  18. J. Ye, K. Webb, R. Millane, and T. Downar, "Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography," J. Opt. Soc. Am. A 16, 1814-1826 (1999). [CrossRef]
  19. W. Cai, S. K. Gayen, M. Xu, M. Zevallos, M. Alrubaiee, M. Lax, and R. R. Alfano, "Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements," Appl. Opt. 38, 4237-4246 (1999). [CrossRef]
  20. F. Gao, Y. Tanikawa, H. Zhao, and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002). [CrossRef] [PubMed]
  21. T. Dierkes, D. Grosenick, K. T. Moesta, M. Möller, P. M. Schlag, H. Rinneberg, and S. Arridge, "Reconstruction of optical properties of phantom and breast lesion in vivo from paraxial scanning data," Phys. Med. Biol. 50, 2519-2542 (2005). [CrossRef] [PubMed]
  22. S. Fantini, S. Walker, M. Franceschini, M. Kaschke, P. Schlag, and K. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982-1989 (1998). [CrossRef]
  23. D. Grosenick, H. Wabnitz, and H. Rinneberg, "Time-resolved imaging of solid phantoms for optical mammography," Appl. Opt. 36, 221-231 (1997). [CrossRef] [PubMed]
  24. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, and R. Cubeddu, "Experimental test of a perturbation model for time-resolved imaging in diffusive media," Appl. Opt. 42, 3145-3153 (2003). [CrossRef] [PubMed]
  25. D. Contini, F. Martelli, and G. Zaccanti, "Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory," Appl. Opt. 36, 4587-4599 (1997). [CrossRef] [PubMed]
  26. J. C. Hebden and S. R. Arridge, "Imaging through scattering media by the use of an analytical model of perturbation amplitudes in the time domain," Appl. Opt. 35, 6788-6796 (1996). [CrossRef] [PubMed]
  27. M. Morin, S. Verrealut, A. Mailloux, J. Fréchette, S. Chatigny, Y. Painchaud, and P. Beaudry, "Inclusion characterization in a scattering slab with time-resolved transmittance measurements: perturbation analysis," Appl. Opt. 39, 2840-2852 (2000). [CrossRef]
  28. S. Carraresi, T. S. M. Shatir, F. Martelli, and G. Zaccanti, "Accuracy of a perturbation model to predict the effect of scattering and absorbing inhomogeneities on photon migration," Appl. Opt. 40, 4622-4632 (2001). [CrossRef]
  29. A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, "Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography," Opt. Express 11, 853-867 (2003). [CrossRef] [PubMed]
  30. S. D. Nicola, R. Esposito, and M. Lepore, "Perturbation model to predict the effect of spatially varying absorptive inhomogeneities in diffusing media," Phys. Rev. E 68, 021901 (2003). [CrossRef]
  31. P. K. Burguess, P. M. Kulesa, L. D. Murray, and E. C. Alvord, Jr., "The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of gliomas," J. Neuropathol. Exp. Neurol. 56, 704-713 (1997).
  32. L. M. Sander and T. S. Deisboeck, "Growth patterns of microscopic brain tumors," Phys. Rev. E 66, 051901 (2002). [CrossRef]
  33. L. M. Wein, J. T. Wu, A. C. Ianculescu, and R. K. Puri, "A mathematical model of the impact of the infused targeted cytotoxic agents on brain tumours: implication for detection, design and delivery," Cell Prolif. 35, 343-361 (2002). [CrossRef] [PubMed]
  34. R. Esposito, S. D. Nicola, M. Lepore, I. Delfino, and P. Indovina, "A perturbation approach to characterize absorptive inclusions in diffusing media by time-resolved contrast measurements," J. Opt. A Pure Appl. Opt. 6, 1-6 (2004). [CrossRef]
  35. S. D. Nicola, R. Esposito, M. Lepore, and P. Indovina, "Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media," Phys. Rev. E 69, 031901 (2004). [CrossRef]
  36. V. Chernomordik, D. Hattery, D. Grosenick, H. Wabnitz, H. Rinneberg, K. Moesta, P. Schlag, and A. Gandjbakhche, "Quantification of optical properties of a breast tumor using random walk theory," J. Biomed. Opt. 7, 80-87 (2002). [CrossRef] [PubMed]
  37. B. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000). [CrossRef] [PubMed]
  38. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. Tromberg, "Sources of contrast for quantitative non-invasive optical spectroscopy of breast tissue physiology," Acad. Radiol. 8, 211-218 (2001). [CrossRef] [PubMed]
  39. J. M. Kaltenbach and M. Kaschke, "Frequency- and time-domain modeling of light transport in random media," in Proc. SPIE IS11, 65-86 (1993).
  40. S. R. Arridge, "Photon-measurement density functions. Part I: Analytical forms," Appl. Opt. 34, 7395-7409 (1995). [CrossRef] [PubMed]
  41. S. R. Arridge, M. Schwieger, M. Hirakoa, and D. T. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  42. M. Shweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). [CrossRef]
  43. Y. Painchaud, A. Mailloux, M. Mori, S. Verreault, and P. Beaudry, "Time-domain optical imaging: discrimination between scattering and absorption," Appl. Opt. 38, 3686-3692 (1999). [CrossRef]
  44. A. H. Gandjbakhche, V. Chernomordik, J. C. Hebden, and R. Nossal, "Time-dependent contrast functions for quantitative imaging in time-resolved transillumination experiments," Appl. Opt. 37, 1973-1981 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited