OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1971–1977

Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides

Ian Breukelaar and Pierre Berini  »View Author Affiliations

JOSA A, Vol. 23, Issue 8, pp. 1971-1977 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (138 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The normal-mode-analysis method is used to model the radiative spreading of long-range surface plasmon polariton modes injected into regions where the bound surface mode is cutoff or radiative. Mode cutoff is induced by an asymmetry between the index of refraction of the top cladding layer and that of the bottom. The analysis was performed at λ 0 = 1.55 μ m for infinite-width (slab) metal waveguides where the metal was Au and the bounding dielectrics were SiO 2 . Results show that a change in insertion loss of > 20 dB is possible for an appropriate waveguide geometry and dielectric asymmetry.

© 2006 Optical Society of America

OCIS Codes
(230.7400) Optical devices : Waveguides, slab
(240.6680) Optics at surfaces : Surface plasmons
(250.7360) Optoelectronics : Waveguide modulators
(310.2790) Thin films : Guided waves
(350.5610) Other areas of optics : Radiation

ToC Category:
Optics at Surfaces

Original Manuscript: September 1, 2005
Revised Manuscript: December 13, 2005
Manuscript Accepted: February 9, 2006

Ian Breukelaar and Pierre Berini, "Long-range surface plasmon polariton mode cutoff and radiation in slab waveguides," J. Opt. Soc. Am. A 23, 1971-1977 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. U. Fano, "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)," J. Opt. Soc. Am. 31, 213-222 (1941). [CrossRef]
  2. R. H. Ritchie, "Plasma losses by fast electrons in thin films," Phys. Rev. 106, 874-881 (1957). [CrossRef]
  3. E. A. Stern and R. A. Ferrell, "Surface plasma oscillations of a degenerate electron gas," Phys. Rev. 120, 130-l36 (1960). [CrossRef]
  4. C. J. Powell and J. B. Swan, "Origin of the characteristic electron energy losses in aluminum," Phys. Rev. 115, 869-875 (1959). [CrossRef]
  5. A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968). [CrossRef]
  6. E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturforsch. A Z. Naturforsch. 23, 2135-2136 (1968).
  7. R. A. Innes and J. R. Sambles, "Optical characterization of gold using surface plasmon polaritons," J. Phys. F: Met. Phys. 17, 277-287 (1987). [CrossRef]
  8. K. L. Kliewer and R. Fuchs, "Collective electronic motion in a metallic slab," Phys. Rev. 153, 498-153 (1967). [CrossRef]
  9. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539-554 (1969). [CrossRef]
  10. D. Sarid, "Long-range surface-plasma waves on very thin metal films," Phys. Rev. Lett. 47, 1927-1930 (1981). [CrossRef]
  11. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  12. F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991). [CrossRef]
  13. C. Jung, S. Yee, and K. Kuhn, "Integrated optics waveguide modulator based on surface plasmon resonance," J. Lightwave Technol. 12, 1802-1806 (1994). [CrossRef]
  14. N. A. Janunts and Kh. V. Nerkararyan, "Modulation of light radiation during input into waveguide by resonance excitation of surface plasmons," Appl. Phys. Lett. 79, 299-301 (2001). [CrossRef]
  15. J. S. Schildkraut, "Long-range surface plasmon electro-optic modulator," Appl. Opt. 27, 4587-4590 (1988). [CrossRef] [PubMed]
  16. K. Welford, "Surface plasmon polaritons and their uses," Opt. Quantum Electron. 23, 1-27 (1991). [CrossRef]
  17. J. Johnstone, G. Stewart, T. Hart, and B. Culshaw, "Surface plasmon polaritons in thin metal films and their role in fiber optic polarizing devices," J. Lightwave Technol. 8, 538-543 (1990). [CrossRef]
  18. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J. M. Hvam, "Waveguiding in surface plasmon polariton band gap structures," Phys. Rev. Lett. 86, 3008-3011 (2001). [CrossRef] [PubMed]
  19. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  20. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 923-925 (2002). [CrossRef]
  21. J. P. Kottmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 655-663 (2001). [CrossRef] [PubMed]
  22. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature (London) 424, 824-830 (2003). [CrossRef]
  23. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  24. P. Berini, "Plasmon-polariton modes guided by a metal film of finite width," Opt. Lett. 24, 1011-1013 (1999). [CrossRef]
  25. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  26. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000). [CrossRef]
  27. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, "Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths," Appl. Phys. Lett. 82, 668-670 (2003). [CrossRef]
  28. I. Breukelaar, R. Charbonneau, and P. Berini, "Long-range surface plasmon-polariton mode cutoff and radiation," Appl. Phys. Lett. 88, 051119 (2006). [CrossRef]
  29. L. Wendler and R. Haupt, "Long-range surface plasmon-polaritons in asymmetric layer structures," J. Appl. Phys. 59, 3289-3291 (1986). [CrossRef]
  30. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures," Phys. Rev. B 63, 125417 (2001). [CrossRef]
  31. F. A. Burton and S. A. Cassidy, "A complete description of the dispersion relation for thin metal film plasmon-polaritons," J. Lightwave Technol. 8, 1843-1849 (1990). [CrossRef]
  32. B. Prade, J. Y. Vinet, and A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991). [CrossRef]
  33. C. Chen, P. Berini, D. Feng, S. Tanez, and V. P. Tzolov, "Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media," Opt. Express 7, 260-272 (2000). [CrossRef] [PubMed]
  34. I. Breukelaar, "Surface plasmon-polaritons in thin metal strips and slabs: Waveguiding and mode cutoff," M.A.Sc. thesis (Faculty of Engineering, University of Ottawa, Ottawa, Ontario, Canada, 2004).
  35. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  36. E. Kreyszig, Advanced Engineering Mathematics, 7th ed. (Wiley, 1993).
  37. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  38. D. F. G. Gallagher and T. P. Felici, "Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons," Proc. SPIE 4987, 69-82 (1995). [CrossRef]
  39. G. I. Stegeman, A. A. Maradudin, and R. F. Wallis, "The optics of surface plasmons," J. Phys. Colloq. 4, 233-241 (1984).
  40. R. E. Smith and S. N. Houde-Walter, "Failure of the leaky-mode representation near the waveguide mode cutoff," Opt. Lett. 20, 1133-1135 (1995). [CrossRef] [PubMed]
  41. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited