OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 2085–2096

Image statistics of American Sign Language: comparison with faces and natural scenes

Rain G. Bosworth, Marian Stewart Bartlett, and Karen R. Dobkins  »View Author Affiliations


JOSA A, Vol. 23, Issue 9, pp. 2085-2096 (2006)
http://dx.doi.org/10.1364/JOSAA.23.002085


View Full Text Article

Enhanced HTML    Acrobat PDF (659 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Several lines of evidence suggest that the image statistics of the environment shape visual abilities. To date, the image statistics of natural scenes and faces have been well characterized using Fourier analysis. We employed Fourier analysis to characterize images of signs in American Sign Language (ASL). These images are highly relevant to signers who rely on ASL for communication, and thus the image statistics of ASL might influence signers’ visual abilities. Fourier analysis was conducted on 105 static images of signs, and these images were compared with analyses of 100 natural scene images and 100 face images. We obtained two metrics from our Fourier analysis: mean amplitude and entropy of the amplitude across the image set (which is a measure from information theory) as a function of spatial frequency and orientation. The results of our analyses revealed interesting differences in image statistics across the three different image sets, setting up the possibility that ASL experience may alter visual perception in predictable ways. In addition, for all image sets, the mean amplitude results were markedly different from the entropy results, which raises the interesting question of which aspect of an image set (mean amplitude or entropy of the amplitude) is better able to account for known visual abilities.

© 2006 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(100.2960) Image processing : Image analysis

ToC Category:
Image Processing

History
Original Manuscript: January 4, 2006
Manuscript Accepted: February 17, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Rain G. Bosworth, Marian Stewart Bartlett, and Karen R. Dobkins, "Image statistics of American Sign Language: comparison with faces and natural scenes," J. Opt. Soc. Am. A 23, 2085-2096 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-9-2085


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Blakemore and G. F. Cooper, "Development of the brain depends on the visual environment," Nature 228, 477-478 (1970). [CrossRef] [PubMed]
  2. C. Blakemore and G. F. Cooper, "Modification of the visual cortex by experience," Brain Res. 31, 366 (1971). [CrossRef] [PubMed]
  3. M. P. Stryker, H. Sherk, A. G. Leventhal, and H. V. Hirsch, "Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours," J. Neurophysiol. 41, 896-909 (1978). [PubMed]
  4. J. Gwiazda, I. Mohindra, S. Brill, and R. Held, "Infant astigmatism and meridional amblyopia," Vision Res. 25, 1269-1276 (1985). [CrossRef] [PubMed]
  5. D. E. Mitchell, R. D. Freeman, M. Millodot, and G. Haegerstrom, "Meridional amblyopia: evidence for modification of the human visual system by early visual experience," Vision Res. 13, 535-558 (1973). [CrossRef] [PubMed]
  6. S. Appelle, "Perception and discrimination as a function of stimulus orientation: the 'oblique effect' in man and animals," Psychol. Bull. 78, 266-278 (1972). [CrossRef] [PubMed]
  7. F. W. Campbell, J. J. Kulikowski, and J. Levinson, "The effect of orientation on the visual resolution of gratings," J. Physiol. (London) 187, 427-436 (1966).
  8. D. E. Mitchell, R. D. Freeman, and G. Westheimer, "Effect of orientation on the modulation sensitivity for interference fringes on the retina," J. Opt. Soc. Am. 57, 246-249 (1967). [CrossRef] [PubMed]
  9. S. Sokol, A. Moskowitz, and V. Hansen, "Electrophysiological evidence for the oblique effect in human infants," Invest. Ophthalmol. Visual Sci. 28, 731-735 (1987).
  10. S. Sokol, A. Moskowitz, and V. Hansen, "Evoked potential and preferential looking correlates of the oblique effect in 3-month-old infants," Doc. Ophthalmol. 71, 321-328 (1989). [CrossRef] [PubMed]
  11. D. Y. Teller, R. Morse, R. Borton, and D. Regal, "Visual acuity for vertical and diagonal gratings in human infants," Vision Res. 14, 1433-1439 (1974). [CrossRef] [PubMed]
  12. R. J. Baddeley and P. J. Hancock, "A statistical analysis of natural images matches psychophysically derived orientation tuning curves," Proc. R. Soc. London, Ser. B 246, 219-223 (1991). [CrossRef]
  13. D. M. Coppola, H. R. Purves, A. N. McCoy, and D. Purves, "The distribution of oriented contours in the real world," Proc. Natl. Acad. Sci. U.S.A. 95, 4002-4006 (1998). [CrossRef] [PubMed]
  14. M. S. Keil and G. Cristobal, "Separating the chaff from the wheat: possible origins of the oblique effect," J. Opt. Soc. Am. A 17, 697-710 (2000). [CrossRef]
  15. E. Switkes, M. J. Mayer, and J. A. Sloan, "Spatial frequency analysis of the visual environment: anisotropy and the carpentered environment hypothesis," Vision Res. 18, 1393-1399 (1978). [CrossRef] [PubMed]
  16. A. van der Schaaf and J. H. van Hateren, "Modelling the power spectra of natural images: statistics and information," Vision Res. 36, 2759-2770 (1996). [CrossRef] [PubMed]
  17. B. C. Hansen and E. A. Essock, "A horizontal bias in human visual processing of orientation and its correspondence to the structural components of natural scenes," J. Vision 4, 1044-1060 (2004). [CrossRef]
  18. A. Torralba and A. Oliva, "Statistics of natural image categories," Network 14, 391-412 (2003). [CrossRef] [PubMed]
  19. R. C. Annis and B. Frost, "Human visual ecology and orientation anisotropies in acuity," Science 182, 729-731 (1973). [CrossRef] [PubMed]
  20. R. M. Balboa and N. M. Grzywacz, "Power spectra and distribution of contrasts of natural images from different habitats," Vision Res. 43, 2527-2537 (2003). [CrossRef] [PubMed]
  21. G. J. Burton and I. R. Moorhead, "Color and spatial structure in natural scenes," Appl. Opt. 26, 157-170 (1987). [CrossRef] [PubMed]
  22. D. J. Field, "Relations between the statistics of natural images and the response properties of cortical cells," J. Opt. Soc. Am. A 4, 2379-2394 (1987). [CrossRef] [PubMed]
  23. D. L. Ruderman and W. Bialek, "Statistics of natural images: scaling in the woods," Phys. Rev. Lett. 73, 814-817 (1994). [CrossRef] [PubMed]
  24. D. J. Tolhurst, Y. Tadmor, and T. Chao, "Amplitude spectra of natural images," Ophthalmic Physiol. Opt. 12, 229-232 (1992). [CrossRef] [PubMed]
  25. D. C. Knill, D. Field, and D. Kersten, "Human discrimination of fractal images," J. Opt. Soc. Am. A 7, 1113-1123 (1990). [CrossRef] [PubMed]
  26. C. A. Parraga, T. Troscianko, and D. J. Tolhurst, "The effects of amplitude-spectrum statistics on foveal and peripheral discrimination of changes in natural images, and a multi-resolution model," Vision Res. 45, 3145-3168 (2005). [CrossRef] [PubMed]
  27. Y. Tadmor and D. J. Tolhurst, "Discrimination of changes in the second-order statistics of natural and synthetic images," Vision Res. 34, 541-554 (1994). [CrossRef] [PubMed]
  28. D. J. Tolhurst and Y. Tadmor, "Discrimination of spectrally blended natural images: optimisation of the human visual system for encoding natural images," Perception 29, 1087-1100 (2000). [CrossRef]
  29. J. Atick and A. Redlich, "What does the retina know about natural scenes?" Neural Comput. 4, 196-210 (1992). [CrossRef]
  30. P. L. Clatworthy, M. Chirimuuta, J. S. Lauritzen, and D. J. Tolhurst, "Coding of the contrasts in natural images by populations of neurons in primary visual cortex (V1)," Vision Res. 43, 1983-2001 (2003). [CrossRef] [PubMed]
  31. B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature 381, 607-609 (1996). [CrossRef] [PubMed]
  32. Y. Tadmor and D. J. Tolhurst, "Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes," Vision Res. 40, 3145-3157 (2000). [CrossRef] [PubMed]
  33. M. V. Srinivasan, S. B. Laughlin, and A. Dubs, "Predictive coding: a fresh view of inhibition in the retina," Proc. R. Soc. London, Ser. B 216, 427-459 (1982). [CrossRef]
  34. E. P. Simoncelli and B. A. Olshausen, "Natural image statistics and neural representation," Annu. Rev. Neurosci. 24, 1193-1216 (2001). [CrossRef] [PubMed]
  35. W. S. Geisler, J. S. Perry, B. J. Super, and D. P. Gallogly, "Edge co-occurrence in natural images predicts contour grouping performance," Vision Res. 41, 711-724 (2001). [CrossRef] [PubMed]
  36. B. C. Regan, C. Julliot, B. Simmen, F. Vienot, P. Charles-Dominique, and J. D. Mollon, "Frugivory and colour vision in Alouatta seniculus, a trichromatic platyrrhine monkey," Vision Res. 38, 3321-3327 (1998). [CrossRef]
  37. C. C. Chiao, D. Osorio, M. Vorobyev, and T. W. Cronin, "Characterization of natural illuminants in forests and the use of digital video data to reconstruct illuminant spectra," J. Opt. Soc. Am. A 17, 1713-1721 (2000). [CrossRef]
  38. J. N. Lythgoe and J. C. Partridge, "Visual pigments and the acquisition of visual information," J. Exp. Biol. 146, 1-20 (1989). [PubMed]
  39. D. Osorio and M. Vorobyev, "Colour vision as an adaptation to frugivory in primates," Proc. R. Soc. London, Ser. B 263, 593-599 (1996). [CrossRef]
  40. J. Pokorny and V. C. Smith, "Evaluation of single-pigment shift model of anomalous trichromacy," J. Opt. Soc. Am. 67, 1196-1209 (1977). [CrossRef] [PubMed]
  41. J. D. Mollon, "Color vision," Annu. Rev. Physiol. 33, 41-85 (1982).
  42. M. A. Webster, "Pattern selective adaptation in color and form perception," in The Visual Neurosciences, M.L.Chalupa and S.J.Werner, eds. (MIT, 2003), pp. 936-947.
  43. M. A. Webster and J. D. Mollon, "Adaptation and the color statistics of natural images," Vision Res. 37, 3283-3298 (1997). [CrossRef]
  44. N. Yendrikhovskij, "Computing color categories from statistics of natural images," J. Imaging Sci. Technol. 45, 409-417 (2001).
  45. S. T. Chung, "The effect of letter spacing on reading speed in central and peripheral vision," Invest. Ophthalmol. Visual Sci. 43, 1270-1276 (2002).
  46. N. J. Majaj, D. G. Pelli, P. Kurshan, and M. Palomares, "The role of spatial frequency channels in letter identification," Vision Res. 42, 1165-1184 (2002). [CrossRef] [PubMed]
  47. D. H. Parish and G. Sperling, "Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination," Vision Res. 31, 1399-1415 (1991). [CrossRef] [PubMed]
  48. J. A. Solomon and D. G. Pelli, "The visual filter mediating letter identification," Nature 369, 395-397 (1994). [CrossRef] [PubMed]
  49. E. Poder, "Spatial-frequency spectra of printed characters and human visual perception," Vision Res. 43, 1507-1511 (2003). [CrossRef] [PubMed]
  50. C. J. Brozinsky and D. Bavelier, "Motion velocity thresholds in deaf signers: changes in lateralization but not in overall sensitivity," Brain Res. Cognit. Brain Res. 21, 1-10 (2004). [CrossRef]
  51. D. Bavelier, C. Brozinsky, A. Tomann, T. Mitchell, H. Neville, and G. Liu, "Impact of early deafness and early exposure to sign language on the cerebral organization for motion processing," J. Neurosci. 21, 8931-8942 (2001). [PubMed]
  52. D. Bavelier, A. Tomann, C. Hutton, T. Mitchell, D. Corina, G. Liu, and H. Neville, "Visual attention to the periphery is enhanced in congenitally deaf individuals," J. Neurosci. 20, 1-6 (2000).
  53. K. Emmorey, E. Klima, and G. Hickok, "Mental rotation within linguistic and non-linguistic domains in users of American sign language," Cognition 68, 221-246 (1998). [CrossRef] [PubMed]
  54. K. Emmorey and S. M. Kosslyn, "Enhanced image generation abilities in deaf signers: a right hemisphere effect," Brain Cogn. 32, 28-44 (1996). [CrossRef] [PubMed]
  55. R. G. Bosworth and K. R. Dobkins, "Left hemisphere dominance for motion processing in deaf signers," Psychol. Sci. 10, 256-262 (1999). [CrossRef]
  56. R. G. Bosworth and K. R. Dobkins, "Visual field asymmetries for motion processing in deaf and hearing signers," Brain Cogn 49, 170-181 (2002). [CrossRef] [PubMed]
  57. D. Brentari, A Prosodic Model of American Sign Language Phonology (MIT, 1998).
  58. D. Perlmutter, "Sonority and syllable structure in American Sign Language," Linguist. Inquiry 23, 407-442 (1992).
  59. R. B. Wilbur and A. M. Martinez, "Physical correlates of prosodic structure in American Sign Language," presented at the Meeting of the Chicago Linguistics Society, April 25-27, 2002.
  60. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley, 1991). [CrossRef]
  61. J. J. Atick, "Could information theory provide an ecological theory for sensory processing?" Network Comput. Neural Syst. 3, 231-251 (1992). [CrossRef]
  62. T. R. Riedl and G. Sperling, "Spatial-frequency bands in complex visual stimuli: American Sign Language," J. Opt. Soc. Am. A 5, 606-616 (1988). [CrossRef] [PubMed]
  63. E. A. Essock, J. K. DeFord, B. C. Hansen, and M. J. Sinai, "Oblique stimuli are seen best (not worst!) in naturalistic broad-band stimuli: a horizontal effect," Vision Res. 43, 1329-1335 (2003). [CrossRef] [PubMed]
  64. P. Eccarius and D. Brentari, "Symmetry and dominance: a cross-linguistic study of signs and classifier constructions," Lingua (to be published); www.sciencedirect.com.
  65. R. G. Bosworth, C. E. Wright, M. S. Bartlett, D. P. Corina, and K. R. Dobkins, "Characterization of the visual properties of spatial frequency and speed in ASL signs," in Cross-Linguistic Perspectives in Sign Language Research. Selected Papers from TISLR 2000, A.E.Baker, B.van den Bogaerde, and O.Crasborn, eds. (Signum, 2003), pp. 265-282.
  66. A. M. Martinez and R. Benavente, "The AR face database," CVC Tech. Rep. 24 (Computer Vision Center, Universitat Autònama de Barcelona, 1998) Available at http://rvl1.ecn.purdue.edu/~aleix/ar.html.
  67. J. H. van Hateren and A. van der Schaaf, "Independent component filters of natural images compared with simple cells in primary visual cortex," Proc. R. Soc. London, Ser. B 265, 359-366 (1998). [CrossRef]
  68. N. Brady and D. J. Field, "Local contrast in natural images: normalisation and coding efficiency," Perception 29, 1041-1055 (2000). [CrossRef]
  69. J. G. Daugman, "Entropy reduction and decorrelation in visual coding by oriented neural receptive fields," IEEE Trans. Biomed. Eng. 36, 107-114 (1989). [CrossRef] [PubMed]
  70. D. Field, "What is the goal of sensory coding?" Neural Comput. 6, 559-601 (1994). [CrossRef]
  71. J. Huang and D. Mumford, "Statistics of natural images and models," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE Press, 1999), pp. 541-547.
  72. M. S. Lewicki, "Efficient coding of natural sounds," Nat. Neurosci. 5, 356-363 (2002). [CrossRef] [PubMed]
  73. A. J. Bell and T. J. Sejnowski, "The 'independent components' of natural scenes are edge filters," Vision Res. 37, 3327-3338 (1997). [CrossRef]
  74. M. G. Thomson, "Beats, kurtosis and visual coding," Network 12, 271-287 (2001). [PubMed]
  75. D. Kersten, "Predictability and redundancy of natural images," J. Opt. Soc. Am. A 4, 2395-2400 (1987). [CrossRef] [PubMed]
  76. D. L. Ruderman, "The statistics of natural images," Network Comput. Neural Syst. 5, 517-548 (1994). [CrossRef]
  77. D. L. Ruderman, "Origins of scaling in natural images," Vision Res. 37, 3385-3398 (1997). [CrossRef]
  78. R. M. Balboa, C. W. Tyler, and N. M. Grzywacz, "Occlusions contribute to scaling in natural images," Vision Res. 41, 955-964 (2001). [CrossRef] [PubMed]
  79. E. P. Simoncelli and O. Schwartz, "Modeling surround suppression in V1 neurons with a statistically-derived normalization model," Adv. Neural Inf. Process. Syst. 11, 153-159 (1999).
  80. N. P. Costen, D. M. Parker, and I. Craw, "Effects of high-pass and low-pass spatial filtering on face identification," Percept. Psychophys. 58, 602-612 (1996). [CrossRef] [PubMed]
  81. J. Gold, P. J. Bennett, and A. B. Sekuler, "Identification of band-pass filtered letters and faces by human and ideal observers," Vision Res. 39, 3537-3560 (1999). [CrossRef]
  82. E. Peli, E. Lee, C. L. Trempe, and S. Buzney, "Image enhancement for the visually impaired: the effects of enhancement on face recognition," J. Opt. Soc. Am. A 11, 1929-1939 (1994). [CrossRef]
  83. T. Tieger and L. Ganz, "Recognition of faces in the presence of two-dimensional sinusoidal masks," Percept. Psychophys. 26, 163-167 (1979). [CrossRef]
  84. T. Hayes, M. C. Morrone, and D. C. Burr, "Recognition of positive and negative bandpass-filtered images," Perception 15, 595-602 (1986). [CrossRef] [PubMed]
  85. E. M. Finney and K. R. Dobkins, "Visual contrast sensitivity in deaf versus hearing populations: exploring the perceptual consequences of auditory deprivation and experience with a visual language," Brain Res. Cognit. Brain Res. 11, 171-183 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited