OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 2132–2136

Theoretical study of near-field optical storage with a solid immersion lens

Yaoju Zhang  »View Author Affiliations

JOSA A, Vol. 23, Issue 9, pp. 2132-2136 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Both the reflection inside a hemisphere solid immersion lens (SIL) and the reflection inside the gap between the SIL and the optical recording medium are considered. The near-field SIL imaging theory for high numerical aperture is developed by using the vector diffraction and thin-film optics. Numerical results show that the spot size, Strehl ratio, and sidelobe intensity have an oscillatory behavior with the change of thickness of the air gap, which results from the interference effect of the transmitted field. We find that for smaller spot size, the Strehl ratio is smaller but the sidelobe intensity is larger. A certain thickness of air gap is useful for optical storage, which is less than 63 nm for the system in the simulated examples.

© 2006 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.2990) Imaging systems : Image formation theory
(210.4770) Optical data storage : Optical recording

ToC Category:
Imaging Systems

Original Manuscript: September 12, 2005
Revised Manuscript: December 25, 2005
Manuscript Accepted: December 27, 2005

Yaoju Zhang, "Theoretical study of near-field optical storage with a solid immersion lens," J. Opt. Soc. Am. A 23, 2132-2136 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Mansfield and G. S. Kino, "Solid immersion microscope," Appl. Phys. Lett. 57, 2615-2616 (1990). [CrossRef]
  2. B. D. Terris, H. J. Mamin, and D. Ruger, "Near-field optical data storage using a solid immersion lens," Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  3. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, "Near-field photolithography with a solid immersion lens," Appl. Phys. Lett. 74, 501-503 (1999). [CrossRef]
  4. M. Yoshita, K. Koyama, M. Baba, and H. Akiyama, "Fourier imaging study of efficient near-field optical coupling in solid immersion fluorescence microscopy," J. Appl. Phys. 92, 862-865 (2002). [CrossRef]
  5. S. B. Ippolito, S. A. Thome, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, and Y. Leblebici, "High spatial resolution subsurface thermal emission microscopy," Appl. Phys. Lett. 84, 4529-4531 (2004). [CrossRef]
  6. S. Moehl, H. Zhao, B. D. Don, S. Wachter, and H. Kalt, "Solid immersion lens-enhanced nano-photoluminescence: principle and applications," J. Appl. Phys. 93, 6265-6272 (2003). [CrossRef]
  7. J. Zhang, C. W. See, M. G. Somekh, M. C. Pitter, and S. G. Liu, "Wide-field surface plasmon microscopy with solid immersion excitation," J. Appl. Phys. 85, 5451-5453 (2004).
  8. L. E. Helseth, "Roles of polarization, phase and amplitude in solid immersion lens systems," Opt. Commun. 191, 161-172 (2001). [CrossRef]
  9. Y. Zhang, C. Zhang, and Y. Zou, "Focal-field distribution of the solid immersion lens system with an annular filter," Optik (Stuttgart) 115, 277-280 (2004). [CrossRef]
  10. Y. Zhang, H. Xiao, and C. Zhang, "Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens," New J. Phys. 6, 75 (2004). [CrossRef]
  11. I. Ichimura, S. Hayashi, and G. S. Kino, "High-density optical recording using a solid immersion lens," Appl. Opt. 36, 4339-4348 (1997). [CrossRef] [PubMed]
  12. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  13. T. Milster, J. Jo, and K. Hirota, "Roles of propagation and evanescent waves in solid immersion lens systems," Appl. Opt. 38, 5046-5057 (1999). [CrossRef]
  14. D. Flagello, T. Milster, and A. Rosenbluth, "Theory of high-NA imaging in homogeneous thin films," J. Opt. Soc. Am. A 13, 53-63 (1996). [CrossRef]
  15. F. Guo, T. E. Schlesinger, and D. D. Stancil, "Optical field study of near-field optical recording with a solid immersion lens," Appl. Opt. 39, 324-332 (2000). [CrossRef]
  16. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, "Theoretical analysis of numerical aperture increasing lens microscopy," J. Appl. Phys. 97, 053105 (2005). [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999), p. 64.
  18. P. Török, C. J. R. Sheppard, and P. Varga, "Study of evanescent waves for transmission near-field optical microscopy," J. Mod. Opt. 43, 1167-1183 (1996). [CrossRef]
  19. T. R. M. Sales and G. M. Morris, "Diffractive superresolution elements," J. Opt. Soc. Am. A 14, 1637-1646 (1997). [CrossRef]
  20. H. Ando, "Phase-shifting apodizer of three or more portions," Jpn. J. Appl. Phys., Part 1 31, 557-567 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited