OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 2251–2261

Ray propagation in nonuniform random lattices

Anna Martini, Massimo Franceschetti, and Andrea Massa  »View Author Affiliations

JOSA A, Vol. 23, Issue 9, pp. 2251-2261 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The problem of optical ray propagation in a nonuniform random half-plane lattice is considered. An external source radiates a planar monochromatic wave impinging at an angle θ on a half-plane random grid where each cell can be independently occupied with probability q j = 1 p j , j being the row index. The wave undergoes specular reflections on the occupied cells, and the probability of penetrating up to level k inside the lattice is analytically estimated. Numerical experiments validate the proposed approach and show improvement upon previous results that appeared in the literature. Applications are in the field of remote sensing and communications, where estimation of the penetration of electromagnetic waves in disordered media is of interest.

© 2006 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.5490) General : Probability theory, stochastic processes, and statistics
(030.6600) Coherence and statistical optics : Statistical optics
(080.2710) Geometric optics : Inhomogeneous optical media
(080.2720) Geometric optics : Mathematical methods (general)
(350.5500) Other areas of optics : Propagation

ToC Category:
Geometrical optics

Original Manuscript: February 6, 2006
Manuscript Accepted: March 11, 2006

Anna Martini, Massimo Franceschetti, and Andrea Massa, "Ray propagation in nonuniform random lattices," J. Opt. Soc. Am. A 23, 2251-2261 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Franceschetti, S. Marano, and F. Palmieri, "Propagation without wave equation toward an urban area model," IEEE Trans. Antennas Propag. 47, 1393-1404 (1999). [CrossRef]
  2. G. Grimmett, Percolation (Springer-Verlag, 1989).
  3. D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, 1985). [CrossRef]
  4. R. M. Ross, Stochastic Processes (Wiley, 1983).
  5. S. Marano, F. Palmieri, and G. Franceschetti, "Statistical characterization of ray propagation in a random lattice," J. Opt. Soc. Am. A 16, 2459-2464 (1999). [CrossRef]
  6. S. Marano and M. Franceschetti, "Ray propagation in a random lattice: a maximum entropy, anomalous diffusion process," IEEE Trans. Antennas Propag. 53, 1888-1896 (2005). [CrossRef]
  7. M. Franceschetti, J. Bruck, and L. J. Schulman, "A random walk model of wave propagation," IEEE Trans. Antennas Propag. 52, 1304-1317 (2004). [CrossRef]
  8. M. Franceschetti, "Stochastic rays pulse propagation," IEEE Trans. Antennas Propag. 52, 2742-2752 (2004). [CrossRef]
  9. T. K. Sarkar, J. Zhong, K. Kyungjung, A. Medouri, and M. Salazar-Palma, "A survey of various propagation models for mobile communication," IEEE Antennas Propag. Mag. 45, 51-82 (2003). [CrossRef]
  10. H. L. Bertoni, W. Honcharenko, L. Rocha Maciel, and H. H. Xia, "UHF propagation prediction for wireless personal communications," Proc. IEEE 82, 1333-1359 (1994). [CrossRef]
  11. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, 1997).
  12. A. Ishimaru, "Wave propagation and scattering in random media and rough surfaces," Proc. IEEE 79, 1359-1366 (1991). [CrossRef]
  13. Special issue on "Wave propagation and scattering in random media," J. Opt. Soc. Am. A 2, 2062-2404 (1985).
  14. J. R. Norris, Markov Chains (Cambridge U. Press, 1998).
  15. A. Martini, M. Franceschetti, and A. Massa are preparing a paper to be called "'Electromagnetic wave propagation in nonuniform percolation lattices--theory and experiments."

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited