OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 2290–2294

Absorbance-modulation optical lithography

Rajesh Menon and Henry I. Smith  »View Author Affiliations

JOSA A, Vol. 23, Issue 9, pp. 2290-2294 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (419 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a new mode of optical lithography called absorbance-modulation optical lithography (AMOL) in which a thin film of photochromic material is placed on top of a conventional photoresist and illuminated simultaneously by a focal spot of wavelength λ 1 and a ring-shaped illumination of wavelength λ 2 . The λ 1 radiation converts the photochromic material from an opaque to a transparent configuration, thereby enabling exposure of the photoresist, while the λ 2 radiation reverses the transformation. As a result of these competing effects, the point-spread function that exposes the resist is strongly compressed, resulting in higher photolithographic resolution and information density. We show by modeling that the point-spread-function compression achieved via AMOL depends only on the absorbance distribution in the photostationary state. In this respect, absorbance modulation represents an optical nonlinearity that depends on the intensity ratio of λ 1 and λ 2 and not on the absolute intensity of either one alone. By inserting material parameters into the model, a lithographic resolution corresponding to λ 1 13 is predicted.

© 2006 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(110.3960) Imaging systems : Microlithography
(110.4850) Imaging systems : Optical transfer functions
(110.5220) Imaging systems : Photolithography
(160.4330) Materials : Nonlinear optical materials
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials
(260.5130) Physical optics : Photochemistry

ToC Category:
Nonlinear Optics

Original Manuscript: January 6, 2006
Revised Manuscript: March 3, 2006
Manuscript Accepted: March 17, 2006

Rajesh Menon and Henry I. Smith, "Absorbance-modulation optical lithography," J. Opt. Soc. Am. A 23, 2290-2294 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Selected Papers on Resolution Enhancement Techniques in Optical Lithography, Vol. MS 178, F.M.Schellenberg, ed. (SPIE, 2004).
  2. A. P. Chu, K. K. Berggren, K. S. Johnson, and M. G. Prentiss, "A virtual slit for atom optics and nanolithography," Quantum Semiclassic. Opt. 8, 521-529 (1996). [CrossRef]
  3. L. Kastrup, H. Blom, C. Eggeling, and S. W. Hell, "Fluorescence fluctuation spectroscopy in subdiffraction focal volume," Phys. Rev. Lett. 94, 178104/1-5 (2005). [CrossRef]
  4. S. W. Hell, S. Jakobs, and L. Kastrup, "Imaging and writing at the nanoscale with focused visible light through saturable optical transitions," Appl. Phys. A 77, 859-860 (2003). [CrossRef]
  5. S. W. Hell, "Strategy for far-field optical imaging and writing without diffraction limit," Phys. Lett. A 326, 140-145 (2004). [CrossRef]
  6. B. F. Griffing and P. R. West, "Contrast enhanced photolithography," IEEE Electron Device Lett. 4, 14-16 (1983). [CrossRef]
  7. B. F. Griffing and P. R. West, "Contrast enhanced photoresists--processing and modeling," Polym. Eng. Sci. 23, 947-952 (1983). [CrossRef]
  8. J. C. Crano and R. J. Guglielmetti, Organic Photochromic and Thermochromic Compounds (Plenum, 1999).
  9. K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillip, M. Prentiss, and G. M. Whitesides, "Microlithography by using neutral metastable atoms and self-assembled monolayers," Science 269, 1255-1257 (1995). [CrossRef] [PubMed]
  10. M. D. Levenson, T. Ebihara, G. Dai, Y. Morikawa, N. Hayashi, and T. S. Meng, "Optical vortex masks for via levels," J. Microlithogr. Microfabr. Microsyst. 3, 293-304 (2004). [CrossRef]
  11. D. W. Prather and S. Shi, "Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements," J. Opt. Soc. Am. A 16, 1131-1142 (1999). [CrossRef]
  12. V. V. Kotlyar, A. A. Almazov, S. N. Khonina, V. A. Soifer, H. Elfstrom, and J. Turunen, "Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate," J. Opt. Soc. Am. A 22, 849-861 (2005). [CrossRef]
  13. S. N. Khonina, V. V. Kotlyar, M. V. Shinkaryev, V. A. Soifer, and G. V. Uspleniev, "The phase rotor filter," J. Mod. Opt. 39, 1147-1154 (1992). [CrossRef]
  14. M. Irie, "Diarylethenes for memories and switches," Chem. Rev. (Washington, D.C.) 100, 1685-1716 (2000).
  15. Y. Yokoyama, "Fulgides for memories and switches," Chem. Rev. (Washington, D.C.) 100, 1717-1739 (2000).
  16. R. Menon, A. Patel, E. E. Moon, and H. I. Smith, "An alpha prototype system for zone-plate-array lithography," J. Vac. Sci. Technol. B 22, 3032-3037 (2004). [CrossRef]
  17. D. Chao, A. Patel, T. Barwicz, H. I. Smith, and R. Menon, "Immersion zone-plate-array lithography," J. Vac. Sci. Technol. B 23, 2657-2661 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited