OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 2307–2314

Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors

Donghyun Kim  »View Author Affiliations


JOSA A, Vol. 23, Issue 9, pp. 2307-2314 (2006)
http://dx.doi.org/10.1364/JOSAA.23.002307


View Full Text Article

Enhanced HTML    Acrobat PDF (555 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A nanowire-based surface plasmon resonance (SPR) is investigated as a structure that offers improved sensor performance. The results calculated by rigorous coupled-wave analysis on a model using a hexanedithiol self-assembled monolayer (SAM) indicate that the resonant coupling between localized surface plasmons (LSPs) of nanowires affects the sensitivity enhancement substantially, while the LSP resonance in a single nanowire also contributes. SPR characteristics change significantly by applying a SAM, which can give rise to zero sensitivity for a given SAM. The results suggest that a properly designed nanowire-based SPR biosensor can enhance sensitivity by an order of magnitude with reasonable detection properties.

© 2006 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(130.6010) Integrated optics : Sensors
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 9, 2006
Manuscript Accepted: March 3, 2006

Virtual Issues
Vol. 1, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Donghyun Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-23-9-2307


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Hall, "Use of optical biosensors for the study of mechanically concerted surface adsorption processes," Anal. Biochem. 288, 109-125 (2001). [CrossRef] [PubMed]
  2. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998). [CrossRef]
  3. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, "Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization," J. Am. Chem. Soc. 122, 9071-9077 (2000). [CrossRef]
  4. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers," J. Am. Chem. Soc. 123, 1471-1482 (2001). [CrossRef]
  5. A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002). [CrossRef] [PubMed]
  6. A. D. McFarland and R. P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003). [CrossRef]
  7. W. R. Holland and D. G. Hall, "Surface-plasmon dispersion relation: shifts induced by the interaction with localized plasma resonances," Phys. Rev. B 27, 7765-7768 (1983). [CrossRef]
  8. G. Schider, J. R. Krenn, W. Gotschy, B. Lamprecht, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, "Optical properties of Ag and Au nanowire gratings," J. Appl. Phys. 90, 3825-3830 (2001). [CrossRef]
  9. C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, "Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing," J. Phys. Chem. 106, 1898-1902 (2002). [CrossRef]
  10. L. A. Lyon, D. J. Pena, and M. J. Natan, "Surface plasmon resonance of Au colloid-modified Au films: Particle size dependence," J. Phys. Chem. B 103, 5826-5831 (1999). [CrossRef]
  11. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003). [CrossRef]
  12. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005). [CrossRef] [PubMed]
  13. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402/1-4 (2002). [CrossRef]
  14. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986). [CrossRef]
  15. Y. Kanamori, K. Hane, H. Sai, and H. Yugami, "100nm period silicon antireflection structures fabricated using a porous alumina membrane mask," Appl. Phys. (N.Y.) 78, 142-143 (2001).
  16. T. R. Jensen, L. Kelley, A. Lazarides, and G. C. Schatz, "Electrodynamics of noble metal nanoparticles and nanoparticle clusters," J. Cluster Sci. 10, 295-317 (1999). [CrossRef]
  17. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, "Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings," Opt. Lett. 28, 1870-1872 (2003). [CrossRef] [PubMed]
  18. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticles grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005). [CrossRef]
  19. J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000). [CrossRef]
  20. E. Moreno, D. Emi, C. Hafner, and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. A 19, 101-111 (2002). [CrossRef]
  21. J. P. Kottmann and O. J. F. Martin, "Influence of the cross section and the permittivity on the plasmon resonances spectrum of silver nanowires," Appl. Phys. (N.Y.) 73, 299-304 (2001).
  22. W.-C. Liu, "High sensitivity of surface plasmon of weakly-distorted metallic surfaces," Opt. Express 13, 9766-9773 (2005). [CrossRef] [PubMed]
  23. I. Pockrand and H. Raether, "Surface plasma oscillations in silver films with wavy surface profiles: a quantitative experimental study," Opt. Commun. 18, 395-399 (1976). [CrossRef]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  25. E. Hutter, S. Cha, J.-F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, "Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging," J. Phys. Chem. B 105, 8-12 (2001). [CrossRef]
  26. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, "Biomolecular recognition based on single gold nanoparticle light scattering," Nano Lett. 3, 935-938 (2003). [CrossRef]
  27. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 2.
  28. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).
  29. Ph. Lalanne and J. P. Hugonin, "High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms," J. Opt. Soc. Am. A 15, 1843-1851 (1998). [CrossRef]
  30. C. W. Haggans, L. Li, and R. K. Kostuk, "Effective-medium theory of zeroth-order lamellar gratings in conical mounting," J. Opt. Soc. Am. A 10, 2217-2225 (1993). [CrossRef]
  31. S. Moon and D. Kim, "Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals," J. Opt. Soc. Am. A 23, 199-207 (2006). [CrossRef]
  32. I. Pockrand, "Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings," Surf. Sci. 72, 577-588 (1978). [CrossRef]
  33. N. Mehan and A. Mansingh, "Study of tarnished films formed on silver by exposure to H2S with the surface-plasmon resonance technique," Appl. Opt. 39, 5214-5220 (2000). [CrossRef]
  34. L. A. Lyon, M. D. Musick, and M. J. Natan, "Colloidal Au-enhanced surface plasmon resonance immunosensing," Anal. Chem. 70, 5177-5183 (1998). [CrossRef] [PubMed]
  35. S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004). [CrossRef] [PubMed]
  36. R. Bruns and H. Raether, "Plasma resonance radiation from non-radiative plasmons," Z. Phys. 237, 98-106 (1970). [CrossRef]
  37. J. Homola, I. Koudela, and S. S. Yee, "Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison," Sens. Actuators B 54, 16-24 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited