OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 23, Iss. 9 — Sep. 1, 2006
  • pp: 2342–2348

Field enhancement in single subwavelength apertures

Evgeny Popov, Michel Nevière, Jérôme Wenger, Pierre-François Lenne, Hervé Rigneault, Patric Chaumet, Nicolas Bonod, José Dintinger, and Thomas Ebbesen  »View Author Affiliations

JOSA A, Vol. 23, Issue 9, pp. 2342-2348 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A peak of the detected fluorescence rate per molecule has recently been observed in experiments of fluorescence correlation spectroscopy carried out on subwavelength apertures in metallic screens, a phenomenon that appears at a diameter-to-wavelength ratio below the fundamental mode cutoff. Although the origin of the resonant transmission through a subwavelength aperture has been well explained in terms of excitation of plasmon surface modes on the aperture ridge, the origin of the maximum that occurs at a radius-to-wavelength ratio smaller than 1 4 was not clear. Using a rigorous electromagnetic theory of light diffraction in cylindrical geometry, we show that it is linked to the appearance of the fundamental mode propagating inside the aperture. We obtain good agreement between the theoretical and the experimental results.

© 2006 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(050.1940) Diffraction and gratings : Diffraction
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:

Original Manuscript: December 2, 2005
Revised Manuscript: March 7, 2006
Manuscript Accepted: March 9, 2006

Evgeny Popov, Michel Nevière, Jérôme Wenger, Pierre-François Lenne, Hervé Rigneault, Patric Chaumet, Nicolas Bonod, José Dintinger, and Thomas Ebbesen, "Field enhancement in single subwavelength apertures," J. Opt. Soc. Am. A 23, 2342-2348 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through subwavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  2. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  3. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through sub-wavelength holes," Phys. Rev. B 58, 6779-6782 (1998). [CrossRef]
  4. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  5. L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, "Near-field distribution of optical transmission of periodic subwavelength holes in a metal film," Phys. Rev. Lett. 86, 1110-1113 (2001). [CrossRef] [PubMed]
  6. A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolf, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Evanescently-coupled surface resonance in surface plasmon enhanced transmission," Opt. Commun. 200, 1-7 (2001). [CrossRef]
  7. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, "Optical transmission properties of a single subwavelength aperture in a real metal," Opt. Commun. 239, 61-66 (2004). [CrossRef]
  8. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Transmission of light through small elliptical apertures," Opt. Express 12, 2631-2648 (2004). [CrossRef] [PubMed]
  9. E. Popov, N. Bonod, M. Nevière, H. Rigneault, P. F. Lenne, and P. Chaumet, "Surface plasmon excitation on a single subwavelength hole in a metallic sheet," Appl. Opt. 44, 2332-2337 (2005). [CrossRef] [PubMed]
  10. E. Popov, M. Nevière, P. Boyer, and N. Bonod, "Transmission through single apertures," Opt. Commun. 255, 338-348 (2005). [CrossRef]
  11. R. Gordon and A. Brolo, "Increased cut-off wavelength for a subwavelength hole in a real metal," Opt. Express 13, 1933-1938 (2005). [CrossRef] [PubMed]
  12. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, "Zero-mode waveguides for single-molecule analysis at high concentrations," Science 299, 682-686 (2003). [CrossRef] [PubMed]
  13. H. Rigneault, J. Capoulade, J. Dintinger, J. Wenger, N. Bonod, E. Popov, T. W. Ebbesen, and P. F. Lenne, "Enhancement of single molecule fluorescence detection in subwavelength apertures," Phys. Rev. Lett. 95, 117401 (2005). [CrossRef] [PubMed]
  14. K. T. Samiee, M. Foquet, L. Guo, E. C. Cox, and H. G. Craighead, "Lambda repressor oligomerization kinetics at high concentrations using fluorescence correlation spectroscopy in zero-mode waveguides," Biophys. J. 88, 2145-2153 (2005). [CrossRef]
  15. J. B. Edel, M. Wu, B. Baird, and H. G. Craighead, "High spatial resolution observation of single molecule dynamics in living cell membranes," Biophys. J. 88, L43-L45 (2005). [CrossRef] [PubMed]
  16. J. Wenger, H. Rigneault, J. Dintinger, D. Marguet, and P. F. Lenne, "Single-fiuorophore diffusion in a lipid membrane over a subwavelength aperture," J. Biol. Phys. 32, SN1-SN4 (2006). [CrossRef] [PubMed]
  17. Y. Liu and S. Blair, "Fluorescence enhancement from an array of subwavelength metal apertures," Opt. Lett. 28, 507-509 (2003). [CrossRef] [PubMed]
  18. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, "Biosensing based upon molecular confinement in metallic nanocavity arrays," Nanotechnology 15, 1368-1374 (2004). [CrossRef]
  19. Y. Liu, F. Mahdavi, and S. Blair, "Enhanced fluorescence transduction properties of metallic nanocavity arrays," IEEE J. Sel. Top. Quantum Electron. 11, 778-784 (2005). [CrossRef]
  20. A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, "Enhanced fluorescence from arrays of nanoholes in a gold film," J. Am. Chem. Soc. 127, 14936-14941 (2005). [CrossRef] [PubMed]
  21. J. Wenger, P. F. Lenne, E. Popov, and H. Rigneault, "Single molecule fluorescence in rectangular nano-apertures," Opt. Express 13, 7035-7044 (2005). [CrossRef] [PubMed]
  22. N. Bonod, E. Popov, and M. Nevière, "Differential theory of diffraction by finite cylindrical objects," J. Opt. Soc. Am. A 22, 481-490 (2005). [CrossRef]
  23. R. Rigler, U. Mets, J. Windengren, and P. Kask, "Fluorescence correlation spectroscopy with high count rate and low-background--analysis of translational diffusion," Eur. Biophys. J. 22, 169-175 (1993). [CrossRef]
  24. E. Popov, M. Nevière, A.-L. Fehrembach, and N. Bonod, "Optimization of plasmon excitation at structured apertures," Appl. Opt. 44, 6141-6154 (2005). [CrossRef] [PubMed]
  25. A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  26. S. Enoch, B. Gralak, and G. Tayeb, "Enhanced emission with angular confinement from photonic crystals," Appl. Phys. Lett. 81, 1588-1590 (2002). [CrossRef]
  27. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of light through a single rectangular hole," Phys. Rev. Lett. 95, 103901-1-103901-4 (2005). [CrossRef]
  28. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998), p. 366.
  29. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Philos. Mag. 4, 396-402 (1902).
  30. R. Petit, ed., Electromagnetic Theory of Gratings (Springer, 1980), Chap. 5. [CrossRef]
  31. D. Maystre, "General study of grating anomalies from electromagnetic surface modes," in Electromagnetic Surface Modes, A.D.Boardman, ed.(Wiley, 1982), Chap. 17.
  32. E. Popov, "Light diffraction by relief gratings: macro and microscopic point of view," in Progress in Optics, Vol. XXXIIP.Wolf, ed. (Elsevier, 1993), Chap. 2. [CrossRef]
  33. M. C. Hutley and D. Maystre, "The total absorption of light by a diffraction grating," Opt. Commun. 19, 431-436 (1976). [CrossRef]
  34. E. Popov and L. Tsonev, "Total absorption of light by metallic gratings and energy flow distribution," Surf. Sci. 230, 290-294 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited