OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 1 — Jan. 1, 2007
  • pp: 109–118

Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates

Feng Xu, Kuanfang Ren, and Xiaoshu Cai  »View Author Affiliations


JOSA A, Vol. 24, Issue 1, pp. 109-118 (2007)
http://dx.doi.org/10.1364/JOSAA.24.000109


View Full Text Article

Enhanced HTML    Acrobat PDF (155 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Within the framework of the generalized Lorenz–Mie theory (GLMT), the incident shaped beam of an arbitrary orientation and location is expanded in terms of the spheroidal vector wave functions in given spheroidal coordinates. The beam shape coefficients (BSCs) in spheroidal coordinates are computed by the quadrature method. The classical localization approximation method for BSC evaluation is found to be inapplicable when the Cartesian coordinates of the beam and the particle are not parallel to each other. Once they are parallel, all the symmetry relationships existing for the BSCs in spherical coordinates (spherical BSCs) [ J. Opt. Soc. Am. A 11, 1812 (1994) ] still pertain to the BSCs in spheroidal coordinates (spheroidal BSCs). In addition, the spheroidal BSCs computed by our method are verified by comparing them with those evaluated by Asano and Yamamoto for plane wave incidence [ Appl. Opt. 14, 29 (1975) ]. Furthermore, formulas are given for field reconstruction from the spheroidal BSCs, and consistency is found between the original incident fields and the reconstructed ones.

© 2006 Optical Society of America

OCIS Codes
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(140.0140) Lasers and laser optics : Lasers and laser optics
(290.4020) Scattering : Mie theory

ToC Category:
Scattering

History
Original Manuscript: May 30, 2006
Revised Manuscript: August 4, 2006
Manuscript Accepted: August 7, 2006

Citation
Feng Xu, Kuanfang Ren, and Xiaoshu Cai, "Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates," J. Opt. Soc. Am. A 24, 109-118 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-1-109


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Gouesbet and G. Gréhan, 'Generalized Lorenz-Mie theories, from past to future,' Atomization Sprays 10, 277-333 (2000).
  2. G. Gouesbet, B. Maheu, and G. Gréhan, 'Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,' J. Opt. Soc. Am. A 5, 1427-1443 (1988). [CrossRef]
  3. K. F. Ren, G. Gréhan, and G. Gouesbet, 'Laser sheet scattering by spherical particles,' Part. Part. Syst. Charact. 10, 146-151 (1993). [CrossRef]
  4. G. Gouesbet, J. A. Lock, and G. Gréhan, 'Partial wave representation of laser beams for use in light scattering calculations,' Appl. Opt. 34, 2133-2143 (1995). [CrossRef] [PubMed]
  5. K. F. Ren, G. Gouesbet, and G. Gréhan, 'Integral localized approximation in generalized Lorenz-Mie theory,' Appl. Opt. 37, 4218-4225 (1998). [CrossRef]
  6. K. F. Ren, G. Gréhan, and G. Gouesbet, 'Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results,' J. Opt. Soc. Am. A 14, 3014-3025 (1997). [CrossRef]
  7. G. Gouesbet and L. Méès, 'Generalized Lorenz-Mie theory for infinitely long elliptical cylinders,' J. Opt. Soc. Am. A 16, 1333-1341 (1999). [CrossRef]
  8. Y. P. Han and Z. Wu, 'Scattering of a spheroidal particle illuminated by a Gaussian beam,' Appl. Opt. 40, 2501-2509 (2001). [CrossRef]
  9. Y. P. Han, G. Gréhan, and G. Gouesbet, 'Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,' Appl. Opt. 42, 6621-6629 (2003). [CrossRef] [PubMed]
  10. J. P. Barton, 'Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,' Appl. Opt. 34, 5542-5551 (1995). [CrossRef] [PubMed]
  11. C. Flammer, Spheroidal Wave Functions (Stanford U. Press, 1957).
  12. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics (Chelsea, 1955).
  13. Y. Han and Z. Wu, 'The expansion coefficients of a spheroidal particle illuminated by Gaussian beam,' IEEE Trans. Antennas Propag. 49, 615-620 (2001). [CrossRef]
  14. S. Crozier, L. K. Forbes, and M. Brideson, 'Ellipsoidal harmonic (Lamé) MRI shims,' IEEE Trans. Appl. Supercond. 12, 1880-1885 (2002). [CrossRef]
  15. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  16. G. Gouesbet and J. A. Lock, 'Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,' J. Opt. Soc. Am. A 11, 2516-2525 (1994). [CrossRef]
  17. B. Maheu, G. Gouesbet, and G. Gréhan, 'A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,' J. Opt. (Paris) 19, 59-67 (1988). [CrossRef]
  18. J. P. Barton, 'Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,' J. Appl. Phys. 64, 1632-1639 (1988). [CrossRef]
  19. G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, 'Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory,' Appl. Opt. 35, 1537-1542 (1996). [CrossRef] [PubMed]
  20. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  21. G. Gouesbet, 'Localized interpretation to calculate all the coefficients gnm in the generalized Lorenz-Mie theory,' J. Opt. Soc. Am. A 7, 998-1007 (1990). [CrossRef]
  22. G. Gouesbet, J. A. Lock, and G. Gréhan, 'Partial-wave representations of laser beams for use in light scattering calculations,' Appl. Opt. 34, 2133-2143 (1995). [CrossRef] [PubMed]
  23. B. Maheu, G. Gréhan, and G. Gouesbet, 'Ray localization in Gaussian beams,' Opt. Commun. 70, 259-262 (1989). [CrossRef]
  24. D. B. Hodge, 'Eigenvalues and eigenfunctions of the spheroidal wave equation,' J. Math. Phys. 11, 2308-2312 (1970). [CrossRef]
  25. S. Asano and G. Yamamoto, 'Light scattering by a spheroidal particle,' Appl. Opt. 14, 29-49 (1975). [PubMed]
  26. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (McGraw-Hill, 1968).
  27. L. W. Davis, 'Theory of electromagnetic beams,' Phys. Rev. A 19, 1177-1179 (1979). [CrossRef]
  28. J. P. Barton and D. R. Alexander, 'Fifth order corrected electromagnetic field component for a fundamental Gaussian beam,' J. Appl. Phys. 66, 2800-2802 (1989). [CrossRef]
  29. G. Gouesbet, G. Gréhan, and B. Maheu, 'Computations of the coefficients gn in the generalized Lorenz-Mie theory using three different methods,' Appl. Opt. 27, 4874-4883 (1988). [CrossRef] [PubMed]
  30. F. Xu, K. Ren, G. Gouesbet, G. Gréhan, and X. Cai, 'Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid,' J. Opt. Soc. Am. A 24, 119-131 (2007). [CrossRef]
  31. K. F. Ren, G. Gréhan, and G. Gouesbet, 'Symmetry relations in generalized Lorenz-Mie theory,' J. Opt. Soc. Am. A 11, 1812-1817 (1994). [CrossRef]
  32. K. F. Ren, G. Gréhan, and G. Gouesbet, 'Electromagnetic field expression of a laser sheet and the order of approximation,' J. Opt. (Paris) 25, 165-176 (1994). [CrossRef]
  33. A. E. Siegman, Lasers (University Science, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited