OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 1 — Jan. 1, 2007
  • pp: 119–131

Generalized Lorenz–Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid

Feng Xu, Kuanfang Ren, Gérard Gouesbet, Gérard Gréhan, and Xiaoshu Cai  »View Author Affiliations


JOSA A, Vol. 24, Issue 1, pp. 119-131 (2007)
http://dx.doi.org/10.1364/JOSAA.24.000119


View Full Text Article

Enhanced HTML    Acrobat PDF (227 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The theory of an arbitrarily oriented, shaped, and located beam scattered by a homogeneous spheroid is developed within the framework of the generalized Lorenz–Mie theory (GLMT). The incident beam is expanded in terms of the spheroidal vector wave functions and described by a set of beam shape coefficients ( G n , T M m , G n , T E m ) . Analytical expressions of the far-field scattering and extinction cross sections are derived. As two special cases, plane wave scattering by a spheroid and shaped beam scattered by a sphere can be recovered from the present theory, which is verified both theoretically and numerically. Calculations of the far-field scattering and cross sections are performed to study the shaped beam scattered by a spheroid, which can be prolate or oblate, transparent or absorbing.

© 2006 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(280.1100) Remote sensing and sensors : Aerosol detection
(290.4020) Scattering : Mie theory
(350.3950) Other areas of optics : Micro-optics

ToC Category:
Scattering

History
Original Manuscript: May 30, 2006
Revised Manuscript: August 4, 2006
Manuscript Accepted: August 7, 2006

Citation
Feng Xu, Kuanfang Ren, Gérard Gouesbet, Gérard Gréhan, and Xiaoshu Cai, "Generalized Lorenz-Mie theory for an arbitrarily oriented, located, and shaped beam scattered by a homogeneous spheroid," J. Opt. Soc. Am. A 24, 119-131 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-1-119


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Gupta, T. Mukai, D. B. Vaidya, A. K. Sen, and Y. Okada, 'Interstellar extinction by spheroidal dust grain,' Astron. Astrophys. 441, 555-561 (2005). [CrossRef]
  2. K. Naitoh, 'Cyto-fluid dynamic theory of atomization processes,' Oil Gas Sci. Technol. 54, 205-210 (1999). [CrossRef]
  3. T. Oguchi, 'Electromagnetic wave propagation and scattering in rain and other hydrometeors,' Proc. IEEE 71, 1029-1078 (1983). [CrossRef]
  4. S. Asano and G. Yamamoto, 'Light scattering by a spheroidal particle,' Appl. Opt. 14, 29-49 (1975). [PubMed]
  5. J. P. Barton, 'Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination,' Appl. Opt. 34, 5542-5551 (1995). [CrossRef] [PubMed]
  6. J. P. Barton, 'Internal, near-surface, and scattered electromagnetic fields for a layered spheroid with arbitrary illumination,' Appl. Opt. 40, 3596-3607 (2001). [CrossRef]
  7. J. P. Barton, 'Electromagnetic fields for a spheroidal particle with an arbitrary embedded source,' J. Opt. Soc. Am. A 17, 458-464 (2000). [CrossRef]
  8. G. Gouesbet, B. Maheu, and G. Gréhan, 'Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,' J. Opt. Soc. Am. A 5, 1427-1443 (1988). [CrossRef]
  9. Y. P. Han and Z. Wu, 'Scattering of a spheroidal particle illuminated by a Gaussian beam,' Appl. Opt. 40, 2501-2509 (2001). [CrossRef]
  10. Y. P. Han, G. Gréhan, and G. Gouesbet, 'Generalized Lorenz-Mie theory for a spheroidal particle with off-axis Gaussian-beam illumination,' Appl. Opt. 42, 6621-6629 (2003). [CrossRef] [PubMed]
  11. G. Gouesbet and J. A. Lock, 'Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,' J. Opt. Soc. Am. A 11, 2516-2525 (1994). [CrossRef]
  12. B. Maheu, G. Gouesbet, and G. Gréhan, 'A concise presentation of the generalized Lorenz-Mie theory for arbitrary location of the scatterer in an arbitrary incident profile,' J. Opt. (Paris) 19, 59-67 (1988). [CrossRef]
  13. J. P. Barton, 'Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,' J. Appl. Phys. 64, 1632-1639 (1988). [CrossRef]
  14. G. Gouesbet, C. Letellier, K. F. Ren, and G. Gréhan, 'Discussion of two quadrature methods of evaluating beam-shape coefficients in generalized Lorenz-Mie theory,' Appl. Opt. 35, 1537-1542 (1996). [CrossRef] [PubMed]
  15. K. F. Ren, G. Gouesbet, and G. Gréhan, 'Integral localized approximation in generalized Lorenz-Mie theory,' Appl. Opt. 37, 4218-4225 (1998). [CrossRef]
  16. G. Gouesbet, 'Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres,' J. Opt. Soc. Am. A 16, 1641-1650 (1999). [CrossRef]
  17. C. Flammer, Spheroidal Wave Functions (Stanford U. Press, 1957).
  18. L. W. Li, M. S. Leong, T. S. Yeo, P. S. Kooi, and K. Y. Tan, 'Computations of spheroidal harmonics with complex arguments: a review with an algorithm,' Phys. Rev. E 58, 6792-6806 (1998). [CrossRef]
  19. T. Oguchi, 'Eigenvalues of spheroidal wave functions and their branch points for complex values of propagation constants,' Radio Sci. 5, 1207-1214 (1970). [CrossRef]
  20. D. B. Hodge, 'Eigenvalues and eigenfunctions of the spheroidal wave equation,' J. Math. Phys. 11, 2308-2312 (1970). [CrossRef]
  21. L. W. Li, M. S. Leong, P. S. Kooi, and T. S. Yeo, 'Spheroidal vector wave eigenfunction expansion of dyadic Green's functions for a dielectric spheroid,' IEEE Trans. Antennas Propag. 49, 645-659 (2001). [CrossRef]
  22. L. W. Li, X. K. Kang, and M. S. Leong, Spheroidal Wave Functions in Electromagnetic Theory (Wiley, 2002).
  23. L. W. Li, T. S. Yeo, P. S. Kooi, and M. S. Leong, 'Microwave specific attenuation by oblate spheroidal raindrops: an exact analysis of TCS's in terms of spheroidal wave functions,' Electromagn. Waves 18, 127-150 (1998). [CrossRef]
  24. Y. Yong and A. R. Sebak, 'Radiation pattern of aperture coupled prolate hemispheroidal dielectric resonator antenna,' Electromagn. Waves 58, 115-133 (2006). [CrossRef]
  25. F. Xu, K. F. Ren, and X. S. Cai, 'Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates,' J. Opt. Soc. Am. A 24, 000-000 (2007).
  26. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 1999).
  27. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  28. L. W. Davis, 'Theory of electromagnetic beams,' Phys. Rev. A 19, 1177-1179 (1979). [CrossRef]
  29. K. F. Ren, G. Gréhan, and G. Gouesbet, 'Evaluation of laser-sheet beam shape coefficients in generalized Lorenz-Mie theory by use of a localized approximation,' J. Opt. Soc. Am. A 11, 2072-2079 (1994). [CrossRef]
  30. K. F. Ren, G. Gréhan, and G. Gouesbet, 'Electromagnetic field expression of the laser sheet and the order of approximation,' J. Opt. (Paris) 25, 165-176 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited