OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 1 — Jan. 1, 2007
  • pp: 211–214

Optical intensity distribution of a plano–convex solid immersion mirror

Yaoju Zhang  »View Author Affiliations


JOSA A, Vol. 24, Issue 1, pp. 211-214 (2007)
http://dx.doi.org/10.1364/JOSAA.24.000211


View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ignoring the effect of the small aperture, we deduce the optical field distribution of the so-called plano–convex solid immersion mirror with a small aperture on the apex (PC-SIM) by using the vector diffraction theory. The simulation results show that a PC-SIM, like a solid immersion lens (SIL), can achieve high resolution. Unlike the SIL, the PC-SIM can effectively reduce the spreading of the spot size with increasing distance from the interface. The size and intensity of the spot are related not only to the refractive index of the solid immersion medium but also to the structure parameter of the PC-SIM. The size of a spot smaller than a quarter wavelength can be obtained simply by optimizing the structure parameter of a PC-SIM but not by decreasing the size of the small aperture.

© 2006 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(230.4040) Optical devices : Mirrors
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

History
Original Manuscript: May 5, 2006
Revised Manuscript: June 16, 2006
Manuscript Accepted: June 18, 2006

Citation
Yaoju Zhang, "Optical intensity distribution of a plano-convex solid immersion mirror," J. Opt. Soc. Am. A 24, 211-214 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-1-211


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Mansfield and G. S. Kino, 'Solid immersion microscope,' Appl. Phys. Lett. 57, 2615-2616 (1990). [CrossRef]
  2. B. D. Terris, H. J. Mamin, and D. Rugar, 'Near-field optical data storage using a solid immersion lens,' Appl. Phys. Lett. 65, 388-390 (1994). [CrossRef]
  3. Y. Zhang, W. Zheng, and Y. Zou, 'Focal-field distribution of the solid immersion lens system with an annular filter,' Optik (Stuttgart) 115, 277-280 (2004). [CrossRef]
  4. Y. Zhang, H. Xiao, and C. Zheng, 'Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,' New J. Phys. 6, 75.1-75.14 (2004). [CrossRef]
  5. Y. Zhang, C. Zheng, and H. Xiao, 'Improving the resolution of a solid immersion lens optical system using a multiphase Fresnel zone plate,' Opt. Laser Technol. 37, 444-448 (2005). [CrossRef]
  6. C. Liu and S. H. Park, 'Numerical analysis of an annular-aperture solid immersion lens,' Opt. Lett. 29, 1742-1744 (2004). [CrossRef] [PubMed]
  7. C. Peng, C. Mihalcea, K. Pelhos, and W. A. Challener, 'Focusing characteristics of a planar solid-immersion mirror,' Appl. Opt. 45, 1785-1793 (2006). [CrossRef] [PubMed]
  8. C. Peng, C. Mihalcea, D. Büchel, W. A. Challener, and E. C. Gage, 'Near-field optical recording using a planar solid immersion mirror,' Appl. Phys. Lett. 87, 151105 (2005). [CrossRef]
  9. W. A. Challener, C. Mihalcea, C. Peng, and K. Pelhos, 'Miniature planar solid immersion mirror with focused spot less than a quarter wavelength,' Opt. Express 13, 7189-7197 (2005). [CrossRef] [PubMed]
  10. H. Hatano, T. Sakata, K. Ogura, T. Hoshino, and H. Ueda, 'Plano-convex solid immersion mirror with a small aperture for near-field optical data storage,' Opt. Rev. 9, 66-69 (2002). [CrossRef]
  11. E. Wolf, 'Electromagnetic diffraction in optical systems. I. An integral representation of the image field,' Proc. R. Soc. London, Ser. A 253, 349-357 (1959). [CrossRef]
  12. B. Richards and E. Wolf, 'Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,' Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  13. F. Guo, T. E. Schlesinger, and D. D. Stancil, 'Optical field study of near-field optical recording with a solid immersion lens,' Appl. Opt. 39, 324-332 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited