OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 1 — Jan. 1, 2007
  • pp: 74–83

Fourier transform–based continuous phase-plate design technique: a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility

John A. Marozas  »View Author Affiliations

JOSA A, Vol. 24, Issue 1, pp. 74-83 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (566 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A technique capable of calculating near-field, continuous phase diffractive optics (or phase plates) without phase dislocations and with optional far-field, speckle-spectrum control is introduced. The design technique improves upon a standard phase-retrieval method by adding convergence enhancements, phase continuity control, and far-field, speckle-spectrum control. The convergence enhancements improve the algorithm’s efficiency. Phase continuity control eliminates phase dislocations and mitigates damaging retroreflections and transmissions. Specifying an optional constraint controls the far-field speckle spectrum. Application of these phase plates on the OMEGA and National Ignition Facility laser systems would produce well-controlled far-field spot shapes. High-pass phase-plate designs are compared with designs where the far-field spectrum is not controlled.

© 2006 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics
(050.1970) Diffraction and gratings : Diffractive optics
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(110.6150) Imaging systems : Speckle imaging
(350.5030) Other areas of optics : Phase

ToC Category:
Fourier Optics and Optical Signal Processing

Original Manuscript: March 14, 2006
Revised Manuscript: July 3, 2006
Manuscript Accepted: July 12, 2006

John A. Marozas, "Fourier transform-based continuous phase-plate design technique: a high-pass phase-plate design as an application for OMEGA and the National Ignition Facility," J. Opt. Soc. Am. A 24, 74-83 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. P. Verdon, 'High-performance direct-drive capsule designs for the National Ignition Facility,' Bull. Am. Phys. Soc. 38, 2010 (1993).
  2. S. E. Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P. Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory, W. Seka, C. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell, 'Direct-drive laser fusion: status and prospects,' Phys. Plasmas 5, 1901-1918 (1998). [CrossRef]
  3. D. K. Bradley, J. A. Delettrez, and C. P. Verdon, 'Measurements of the effect of laser beam smoothing on direct-drive inertial-confinement-fusion capsule implosions,' Phys. Rev. Lett. 68, 2774-2777 (1992). [CrossRef] [PubMed]
  4. J. Delettrez, D. K. Bradley, and C. P. Verdon, 'The role of the Rayleigh-Taylor instability in laser-driven burnthrough experiments,' Phys. Plasmas 1, 2342-2349 (1994). [CrossRef]
  5. J. D. Kilkenny, S. G. Glendinning, S. W. Haan, B. A. Hammel, J. D. Lindl, D. Munro, B. A. Remington, S. V. Weber, J. P. Knauer, and C. P. Verdon, 'A review of the ablative stabilization of the Rayleigh-Taylor instability in regimes relevant to inertial confinement fusion,' Phys. Plasmas 1, 1379-1389 (1994). [CrossRef]
  6. R. Epstein, 'Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation,' J. Appl. Phys. 82, 2123-2139 (1997). [CrossRef]
  7. V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, and D. Shvarts, 'Saturation of the Rayleigh-Taylor growth of broad-bandwidth laser-imposed nonuniformities in planar targets,' Phys. Rev. Lett. 81, 5342-5345 (1998). [CrossRef]
  8. F. J. Marshall and G. R. Bennett, 'A high-energy x-ray microscope for inertial confinement fusion,' Rev. Sci. Instrum. 70, 617-619 (1999). [CrossRef]
  9. F. J. Marshall, J. A. Delettrez, V. Yu. Glebov, R. P. J. Town, B. Yaakobi, R. L. Kremens, and M. Cable, 'Direct-drive, hollow-shell implosion studies on the 60-beam, UV OMEGA laser system,' Phys. Plasmas 7, 1006-1013 (2000). [CrossRef]
  10. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, 'Improved laser-beam uniformity using the angular dispersion of frequency-modulated light,' J. Appl. Phys. 66, 3456-3462 (1989). [CrossRef]
  11. 'Two-dimensional SSD on OMEGA,' LLE Rev. 69, 1-10. (1969). (NTIS document DOE/SF/19460-152. Copies may be obtained from the National Technical Information Service, Springfield, Va. 22161.)
  12. S. Skupsky and R. S. Craxton, 'Irradiation uniformity for high-compression laser-fusion experiments,' Phys. Plasmas 6, 2157-2163 (1999). [CrossRef]
  13. J. E. Rothenberg, 'Comparison of beam-smoothing methods for direct-drive inertial confinement fusion,' J. Opt. Soc. Am. B 14, 1664-1671 (1997). [CrossRef]
  14. S. P. Regan, J. A. Marozas, R. S. Craxton, J. H. Kelly, W. R. Donaldson, P. A. Jaanimagi, D. Jacobs-Perkins, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, T. C. Sangster, W. Seka, V. A. Smalyuk, S. Skupsky, and J. D. Zuegel, 'Performance of 1-THz-bandwidth, two-dimensional smoothing by spectral dispersion and polarization smoothing of high-power, solid-state laser beams,' J. Opt. Soc. Am. B 22, 998-1002 (2005). [CrossRef]
  15. S. P. Regan, J. A. Marozas, J. H. Kelly, T. R. Boehly, W. R. Donaldson, P. A. Jaanimagi, R. L. Keck, T. J. Kessler, D. D. Meyerhofer, W. Seka, S. Skupsky, and V. A. Smalyuk, 'Experimental investigation of smoothing by spectral dispersion,' J. Opt. Soc. Am. B 17, 1483-1489 (2000). [CrossRef]
  16. 'Angular spectrum representation of pulsed laser beams with two-dimensional smoothing by spectral dispersion,' LLE Rev. 78, 62-81 (1999). (NTIS document DOE/SF/19460-295. Copies may be obtained from the National Technical Information Service, Springfield, Va. 22161.)
  17. J. A. Marozas, S. P. Regan, J. H. Kelly, D. D. Meyerhofer, W. Seka, and S. Skupsky, 'Laser beam smoothing caused by the small-spatial-scale B integral,' J. Opt. Soc. Am. B 19, 7-17 (2002). [CrossRef]
  18. T. J. Kessler, Y. Lin, J. J. Armstrong, and B. Velazquez, 'Phase conversion of lasers with low-loss distributed phase plates,' in Laser Coherence Control: Technology and Applications, H. T. Powell and T. J. Kessler, eds., Proc. SPIE1870, 95-104 (1993).
  19. Y. Lin, T. J. Kessler, and G. N. Lawrence, 'Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance,' Opt. Lett. 21, 1703-1705 (1996). [CrossRef] [PubMed]
  20. T. R. Boehly, V. A. Smalyuk, D. D. Meyerhofer, J. P. Knauer, D. K. Bradley, R. S. Craxton, M. J. Guardalben, S. Skupsky, and T. J. Kessler, 'Reduction of laser imprinting using polarization smoothing on a solid-state fusion laser,' J. Appl. Phys. 85, 3444-3447 (1999). [CrossRef]
  21. Y. Kato, unpublished notes from work at LLE, 1984. (Contact John. A. Marozas at jimijam@lle.rochester.edu.)
  22. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, 'Suppression of interference speckles produced by a random phase plate, using a polarization control plate,' Opt. Commun. 91, 9-12 (1992). [CrossRef]
  23. K. Tsubakimoto, T. Jitsuno, N. Miyanaga, M. Nakatsuka, T. Kanabe, and S. Nakai, 'Suppression of speckle contrast by using polarization property on second harmonic generation,' Opt. Commun. 103, 185-188 (1993). [CrossRef]
  24. 'Phase conversion using distributed polarization rotation,' LLE Rev. 45, 1-12 (1990). (NTIS document DOE/DP40200-149. Copies may be obtained from the National Technical Information Service, Springfield, Va. 22161.)
  25. T. E. Gunderman, J.-C. Lee, T. J. Kessler, S. D. Jacobs, D. J. Smith, and S. Skupsky, 'Liquid crystal distributed polarization rotator for improved uniformity of focused laser light,' in Conference on Lasers and Electro-Optics, Vol. 7 of 1990 OSA Technical Digest Series (Optical Society of America, 1990), p. 354.
  26. J. E. Rothenberg, 'Polarization beam smoothing for inertial confinement fusion,' J. Appl. Phys. 87, 3654-3662 (2000). [CrossRef]
  27. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, 'Initial performance results of the OMEGA laser system,' Opt. Commun. 133, 495-506 (1997). [CrossRef]
  28. J. Paisner, J. D. Boyes, S. A. Kumpan, W. H. Lowdermilk, and M. S. Sorem, 'National Ignition Facility would boost US industrial competitiveness,' Laser Focus World 30, 75-77 (1994).
  29. P. W. McKenty, T. C. Sangster, M. Alexander, R. Betti, R. S. Craxton, J. A. Delettrez, L. Elasky, R. Epstein, A. Frank, V. Yu. Glebov, V. N. Goncharov, D. R. Harding, S. Jin, J. P. Knauer, R. L. Keck, S. J. Loucks, L. D. Lund, R. L. McCrory, F. J. Marshall, D. D. Meyerhofer, S. P. Regan, P. B. Radha, S. Roberts, W. Seka, S. Skupsky, V. A. Smalyuk, J. M. Soures, K. A. Thorp, M. Wozniak, J. A. Frenje, C. K. Li, R. D. Petrasso, F. H. Séguin, K. A. Fletcher, S. Padalino, C. Freeman, N. Izumi, J. A. Koch, R. A. Lerche, M. J. Moran, T. W. Phillips, G. J. Schmid, and C. Sorce, 'Direct-drive cryogenic target implosion performance on OMEGA,' Phys. Plasmas 11, 2790-2797 (2004). [CrossRef]
  30. R. Epstein and S. Skupsky, 'Anticipated improvement in laser beam uniformity using distributed phase plates with quasirandom patterns,' J. Appl. Phys. 68, 924-931 (1990). [CrossRef]
  31. Inspired by Anishinaabe words Zhizhoo', meaning 'spreads someone using something,' and zhizhoo'an, meaning 'spreads something using something,' just as the phase plate spreads out the diffraction-limited, far-field spot to match the far-field objective. Resource: J. D. Nichols and E. Nyholm, A Concise Dictionary of Minnesota Ojibwe (U. Minnesota Press, 1995).
  32. R. W. Gerchberg and W. O. Saxton, 'A practical algorithm for the determination of phase from image and diffraction plane pictures,' Optik (Stuttgart) 35, 237-246 (1972).
  33. J. R. Fienup, 'Phase retrieval algorithms: a comparison,' Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  34. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1988).
  35. E. Wolf, 'Is a complete determination of the energy spectrum of light possible from measurements of the degree of coherence?' Proc. Phys. Soc. 80, 1269-1272 (1962). [CrossRef]
  36. F. Wyrowski and O. Bryngdahl, 'Iterative Fourier-transform algorithm applied to computer holography,' J. Opt. Soc. Am. A 5, 1058-1065 (1988). [CrossRef]
  37. F. Wyrowski and O. Bryngdahl, 'Speckle-free reconstruction in digital holography,' J. Opt. Soc. Am. A 6, 1171-1174 (1989). [CrossRef]
  38. Y. Lin, T. J. Kessler, and G. N. Lawrence, 'Distributed phase plates for super-Gaussian focal-plane irradiance profiles,' Opt. Lett. 20, 764-766 (1995). [CrossRef] [PubMed]
  39. 'Distributed-phase-plate design using simulated annealing algorithms,' LLE Rev. 64, 170-174 (1995). (NTIS document DOE/SF/19460-99. Copies may be obtained from the National Technical Information Service, Springfield, Va. 22161.)
  40. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley, 1998).
  41. B. Ya. Zel'dovich, N. F. Pilipetsky, and V. V. Shkunov, 'Dislocations of wavefront,' in Principles of Phase Conjugation, J.M.Enoch, D.L.MacAdam, A.L.Schawlow, K.Shimoda, and T.Tamir, eds., Vol. 42 of Springer Series in Optical Sciences (Springer-Verlag, 1985), Sec. 3.5.
  42. E. C. Titchmarsh, 'The zeros of certain integral functions,' Proc. London Math. Soc. 25, 283-302 (1926). [CrossRef]
  43. M. S. Scivier and M. A. Fiddy, 'Phase ambiguities and the zeros of multidimensional band-limited functions,' J. Opt. Soc. Am. A 2, 693-697 (1985). [CrossRef]
  44. M. S. Scivier, T. J. Hall, and M. A. Fiddy, 'Phase unwrapping using the complex zeros of a band-limited function and the presence of ambiguities in two dimensions,' Opt. Acta 31, 619-623 (1984). [CrossRef]
  45. N. B. Baranova and B. Ya. Zel'dovich, 'Dislocations of the wave-front surface and zeros of the amplitude,' Sov. Phys. JETP 53, 925-929 (1981).
  46. A. B. Carlson, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, McGraw-Hill Electrical and Electronic Engineering Series (McGraw-Hill, 1968), pp. 153-154.
  47. W. H. Press, Numerical Recipes in C: The Art of Scientific Computing (Cambridge U. Press, 1988).
  48. J. R. Fienup and C. C. Wackerman, 'Phase-retrieval stagnation problems and solutions,' J. Opt. Soc. Am. A 3, 1897-1907 (1986). [CrossRef]
  49. H. Aagedal, M. Schmid, T. Beth, S. Teiwes, and F. Wryrowski, 'Theory of speckles in diffractive optics and its application to beam shaping,' J. Mod. Opt. 43, 1409-1421 (1996). [CrossRef]
  50. S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, 'Designing fully continuous phase screens for tailoring focal-plane irradiance profiles,' Opt. Lett. 21, 1715-1717 (1996). [CrossRef] [PubMed]
  51. J. W. Goodman, 'Statistical properties of laser speckle patterns,' in Laser Speckle and Related Phenomena, J.C.Dainty, ed., Vol. 9 of Topics in Applied Physics (Springer-Verlag, 1984), Chap. 2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited