OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 10 — Oct. 1, 2007
  • pp: 3135–3139

Experimental implementation of the gyrator transform

José A. Rodrigo, Tatiana Alieva, and María L. Calvo  »View Author Affiliations


JOSA A, Vol. 24, Issue 10, pp. 3135-3139 (2007)
http://dx.doi.org/10.1364/JOSAA.24.003135


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The gyrator transform (GT) promises to be a useful tool in image processing, holography, beam characterization, mode transformation, and quantum information. We introduce what we believe to be the first flexible optical experimental setup that performs the GT for a wide range of transformation parameters. The feasibility of the proposed scheme is demonstrated on the gyrator transformation of Hermite–Gaussian modes. For certain parameters the output mode corresponds to the Laguerre–Gaussian one.

© 2007 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(140.3300) Lasers and laser optics : Laser beam shaping
(200.4740) Optics in computing : Optical processing

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: April 26, 2007
Manuscript Accepted: June 15, 2007
Published: September 12, 2007

Citation
José A. Rodrigo, Tatiana Alieva, and María L. Calvo, "Experimental implementation of the gyrator transform," J. Opt. Soc. Am. A 24, 3135-3139 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-10-3135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Simon and K. B. Wolf, "Structure of the set of paraxial optical systems," J. Opt. Soc. Am. A 17, 342-355 (2000). [CrossRef]
  2. K. B. Wolf, Geometric Optics on Phase Space (Springer-Verlag, 2004).
  3. J. A. Rodrigo, T. Alieva, and M. L. Calvo, "Gyrator transform: properties and applications," Opt. Express 15, 2190-2203 (2007). [CrossRef] [PubMed]
  4. H. M. Ozaktas, Z. Zalevsky, and M. Alper Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2001).
  5. J. A. Rodrigo, T. Alieva, and M. L. Calvo, "Gyrator transform for image processing," Opt. Commun. , in press, doi: 10.1016/j.optcom.2007.06.023.
  6. G. F. Calvo, "Wigner representation and geometric transformations of optical orbital angular momentum spatial modes," Opt. Lett. 30, 1207-1209 (2005). [CrossRef] [PubMed]
  7. T. Alieva and M. Bastiaans, "Orthonormal mode sets for the two-dimensional fractional Fourier transformation," Opt. Lett. 32, 1226-1228 (2007). [CrossRef] [PubMed]
  8. E. G. Abramochkin and V. G. Volostnikov, "Generalized Gaussian beams," J. Opt. A, Pure Appl. Opt. 6, S157-S161 (2004). [CrossRef]
  9. J. A. Rodrigo, T. Alieva, and M. L. Calvo, "Optical system design for ortho-symplectic transformations in phase space," J. Opt. Soc. Am. A 23, 2494-2500 (2006). [CrossRef]
  10. J. Shamir, "Cylindrical lens described by operator algebra," Appl. Opt. 18, 4195-4202 (1979). [CrossRef] [PubMed]
  11. G. Nemes and A. E. Seigman, "Measurement of all ten second-order moments of an astigmatic beam by use of rotating simple astigmatic (anamorphic) optics," J. Opt. Soc. Am. A 11, 2257-2264 (1994). [CrossRef]
  12. V.A.Soifer, ed., Methods for Computer Design of Diffractive Optical Elements (Wiley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited