OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 10 — Oct. 1, 2007
  • pp: A39–A44

Metamaterials with gradient negative index of refraction

Anatoliy O. Pinchuk and George C. Schatz  »View Author Affiliations

JOSA A, Vol. 24, Issue 10, pp. A39-A44 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new metamaterial with a gradient negative index of refraction, which can focus a collimated beam of light coming from a distant object. A slab of the negative refractive index metamaterial has a focal length that can be tuned by changing the gradient of the negative refractive index. A thin metal film pierced with holes of appropriate size or spacing between them can be used as a metamaterial with the gradient negative index of refraction. We use finite-difference time-domain calculations to show the focusing of a plane electromagnetic wave passing through a system of equidistantly spaced holes in a metal slab with decreasing diameters toward the edges of the slab.

© 2007 Optical Society of America

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(260.2110) Physical optics : Electromagnetic optics

Original Manuscript: January 19, 2007
Revised Manuscript: July 2, 2007
Manuscript Accepted: July 5, 2007
Published: September 6, 2007

Virtual Issues
Photonic Metamaterials (2007) JOSA A

Anatoliy O. Pinchuk and George C. Schatz, "Metamaterials with gradient negative index of refraction," J. Opt. Soc. Am. A 24, A39-A44 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, "Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities," Sov. Phys. Usp. 10, 509-517 (1968). [CrossRef]
  2. V. G. Veselago, "Formulating Fermat's principle for light traveling in negative refraction materials," Phys. Usp. 45, 1097-1099 (2002). [CrossRef]
  3. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  4. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with silver superlens," Science 308, 534-537 (2006). [CrossRef]
  5. R. J. Moerland, N. F. van Hulst, H. Gersen, and L. Kuipers, "Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection," Opt. Express 13, 1604-1614 (2005). [CrossRef] [PubMed]
  6. D. Schurig and D. R. Smith, "Negative index lens abberation," Phys. Rev. E 70, 65601-1-4 (2004). [CrossRef]
  7. J. Chen, C. Radu, and A. Puri, "Abberation-free negative-refractive-index lens," Appl. Phys. Lett. 88, 07119 (2006).
  8. D. T. Moore, "Gradient-index optics: a review," Appl. Opt. 19, 1035-1042 (1980). [CrossRef] [PubMed]
  9. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609-1-4 (2005). [CrossRef]
  10. T. Driscoll, D. N. Basov, A. F. Starr, P. M. Rye, S. Nemat-Nasser, D. Schurig, and D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 88, 081101 (2006). [CrossRef]
  11. R. B. Greegor, C. G. Parazzoli, J. A. Nielsen, M. A. Thompson, M. H. Tanielian, and D. R. Smith, "Simulation and testing of a gradient negative index of refraction lens," Appl. Phys. Lett. 87, 091114 (2005). [CrossRef]
  12. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, "The asymmetric lossy near-perfect lens," J. Mod. Opt. 49, 1747-1762 (2002). [CrossRef]
  13. P. Tassin, I. Veretennicoff, and G. Van der Sande, "Veselago's lens consisting of left-handed materials with arbitrary index of refraction," Opt. Commun. 264, 130-134 (2006). [CrossRef]
  14. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett. 90, 107401-14 (2003). [CrossRef] [PubMed]
  15. P. V. Parimi, W. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals--imaging by flat lens using negative refraction," Nature 426, 404-404 (2003). [CrossRef] [PubMed]
  16. X. Ao and S. He, "Negative refraction of left-handed behavior in porous alumina with infiltrated silver at an optical wavelength," Appl. Phys. Lett. 87, 101112 (2005). [CrossRef]
  17. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004). [CrossRef] [PubMed]
  18. M. W. McCall, A. Lakhtakia, and W. S. Weighlhofer, "The negative index of refraction demystified," Eur. J. Phys. 23, 353-359 (2002). [CrossRef]
  19. J. W. Lee, M. A. Seo, J. Y. Sohn, Y. H. Ahn, D. S. Kim, S. C. Jeoung, Ch. Lienau, and Q-Han Park, "Invisible plasmonic meta-materials through impedance matching to vacuum," Opt. Express 13, 10681-10687 (2005). [CrossRef] [PubMed]
  20. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  21. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science 313, 1595-1595 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited