OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 11 — Nov. 1, 2007
  • pp: 3403–3417

Design of correlation filters for recognition of linearly distorted objects in linearly degraded scenes

Erika M. Ramos-Michel and Vitaly Kober  »View Author Affiliations


JOSA A, Vol. 24, Issue 11, pp. 3403-3417 (2007)
http://dx.doi.org/10.1364/JOSAA.24.003403


View Full Text Article

Enhanced HTML    Acrobat PDF (1849 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Generalized correlation filters are proposed to improve recognition of a linearly distorted object embedded in a nonoverlapping background when the input scene is degraded with a linear system and additive noise. Several performance criteria defined for the nonoverlapping signal model are used for the design of filters. The derived filters take into account information about an object to be recognized, disjoint background, noise, and linear degradations of the target and the input scene. Computer simulation results obtained with the proposed filters are discussed and compared with those of various correlation filters in terms of discrimination capability, location errors, and tolerance to input noise.

© 2007 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.5010) Image processing : Pattern recognition

ToC Category:
Image Processing

History
Original Manuscript: April 9, 2007
Revised Manuscript: August 6, 2007
Manuscript Accepted: August 14, 2007
Published: October 1, 2007

Citation
Erika M. Ramos-Michel and Vitaly Kober, "Design of correlation filters for recognition of linearly distorted objects in linearly degraded scenes," J. Opt. Soc. Am. A 24, 3403-3417 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-11-3403


Sort:  Year  |  Journal  |  Reset  

References

  1. A. B. VanderLugt, "Signal detection by complex filtering," IEEE Trans. Inf. Theory IT-10, 139-145 (1964). [CrossRef]
  2. B. V. K. Vijaya-Kumar, A. Mahalanobis, and R. D. Juday, Correlation Pattern Recognition (Cambridge U. Press, 2005). [CrossRef]
  3. B. V. K. Vijaya-Kumar and L. Hassebrook, "Performance measures for correlation filters," Appl. Opt. 29, 2997-3006 (1990). [CrossRef]
  4. J. L. Horner and P. D. Gianino, "Phase-only matched filtering," Appl. Opt. 23, 812-816 (1984). [CrossRef] [PubMed]
  5. L. P. Yaroslavsky, "The theory of optimal methods for localization of objects in pictures," in Progress in Optics, E.Wolf, ed., Vol. XXXIII (Elsevier, 1993), pp. 145-201. [CrossRef]
  6. B. V. K. Vijaya-Kumar, "Correlation filters minimizing peak location errors," J. Opt. Soc. Am. A 9, 678-682 (1992). [CrossRef]
  7. V. Kober and J. Campos, "Accuracy of location measurement of a noisy target in a nonoverlapping background," J. Opt. Soc. Am. A 13, 1653-1666 (1996). [CrossRef]
  8. D. Casasent, "Unified synthetic discriminant function computational formulation," Appl. Opt. 23, 1620-1627 (1984). [CrossRef] [PubMed]
  9. A. Mahalanobis, B. V. K. Vijaya-Kumar, and D. Casasent, "Minimum average correlation filters," Appl. Opt. 26, 3633-3640 (1987). [CrossRef] [PubMed]
  10. B. Javidi and J. Wang, "Limitation of the classic definition of the correlation signal-to-noise ratio in optical pattern recognition with disjoint signal and scene noise," Appl. Opt. 31, 6826-6829 (1992). [CrossRef] [PubMed]
  11. P. Réfrégier, B. Javidi, and G. Zhang, "Minimum mean square error filter for pattern recognition with spatially disjoint signal and scene noise," Opt. Lett. 18, 1453-1455 (1993). [CrossRef] [PubMed]
  12. B. Javidi and J. Wang, "Design of filters to detect a noisy target in nonoverlapping background noise," J. Opt. Soc. Am. A 11, 2604-2612 (1994). [CrossRef]
  13. B. Javidi, F. Parchekani, and G. Zhang, "Minimum-mean-square-error filters for detecting a noisy target in background noise," Appl. Opt. 35, 6964-6975 (1996). [CrossRef] [PubMed]
  14. N. Towghi and B. Javidi, "Optimum receivers for pattern recognition in the presence of Gaussian noise with unknown statistics," J. Opt. Soc. Am. A 18, 1844-1852 (2001). [CrossRef]
  15. N. Towghi and B. Javidi, "Image recognition in the presence of non-gaussian noise with unknown statistics," J. Opt. Soc. Am. A 18, 2744-2753 (2001). [CrossRef]
  16. P. Réfrégier, "Bayesian theory for target location in noise with unknown spectral density," J. Opt. Soc. Am. A 16, 276-283 (1999). [CrossRef]
  17. F. Gaudail and P. Réfrégier, "Optimal target tracking on image sequences with a deterministic background," J. Opt. Soc. Am. A 14, 3197-3207 (1997). [CrossRef]
  18. V. Kober, Y. K. Seong, T. S. Choi, and I. A. Ovseyevich, "Trade-off filters for optical pattern recognition with nonoverlapping target and scene noise," Pattern Recog. Image Anal. 10, 149-151 (2000).
  19. J. Campos, S. Bosch, J. Sallent, and A. Berzal, "Experimental implementation of correlation filters for optical pattern recognition in defocused images," J. Opt. 25, 25-31 (1994). [CrossRef]
  20. A. Carnicer, S. Vallmitjana, J. de F. Moneo, and I. Juvells, "Implementation of an algorithm for detecting patterns in defocused scenes using binary joint transform correlation," Opt. Commun. 130, 327-336 (1996). [CrossRef]
  21. I. Juvells, S. Vallmitjana, E. Martin-Badosa, and A. Carnicer, "Optical pattern recognition in motion acquired scenes using a binary joint transform correlation," J. Mod. Opt. 44, 313-326 (1997). [CrossRef]
  22. A. Vargas, J. Campos, C. S. Martin, and N. Vera, "Filter design of composite trade-off filter with support regions to obtain invariant pattern recognition with defocused images," Opt. Lasers Eng. 40, 67-79 (2003). [CrossRef]
  23. V. H. Diaz-Ramirez, V. Kober, and J. Alvarez-Borrego "Pattern recognition with an adaptive joint transform correlator," Appl. Opt. 45, 5929-5941 (2006). [CrossRef]
  24. J. A. González-Fraga, V. Kober, and J. Álvarez-Borrego, "Adaptive synthetic discriminant function filters for pattern recognition," Opt. Eng. 45, 057005 (1-10) (2006). [CrossRef]
  25. A. Vargas, R. Figueroa, J. Campos, C. San Martín, and J. Marileo, "Reconocimiento de formas con un correlador óptico aplicado a imágenes desenfocadas: invariancia por medio de la selección y fusión de bandas," Rev. Mex. Fis. 53, 199-204 (2006).
  26. R. Navarro, O. Nestares, and J. J. Valles, "Bayesian pattern recognition in optically degraded noisy images," J. Opt. A 6, 36-42 (2004). [CrossRef]
  27. A. Stern, I. Kruchakov, E. Yoavi, and N. S. Kopeika, "Recognition of motion-blurred images by use of the method of moments," Appl. Opt. 41, 2164-2171 (2002). [CrossRef] [PubMed]
  28. F. Chan, N. Towghi, L. Pan, and B. Javidi, "Distortion-tolerant minimum-mean-squared-error filter for detecting noisy targets in environmental degradation," Opt. Eng. 39, 2092-2100 (2000). [CrossRef]
  29. J. Campos, S. Bosch, and J. Sallent, "Optical pattern recognition in defocused images using correlation filters," Opt. Commun. 82, 370-379 (1991). [CrossRef]
  30. J. Biemond, R. L. Lagendijk, and R. M. Mersereau, "Iterative methods for image deblurring," Proc. IEEE 78, 856-883 (1990). [CrossRef]
  31. M. I. Sezan and A. M. Tekalp, "Survey of recent developments in digital image restoration," Opt. Eng. 29, 393-404 (1990). [CrossRef]
  32. J. Flusser, T. Suk, and S. Saic, "Recognition of blurred images by the method of moments," IEEE Trans. Image Process. 5, 533-538 (1996). [CrossRef] [PubMed]
  33. J. Flusser and T. Suk, "Degraded image analysis: an invariant approach," IEEE Trans. Pattern Anal. Mach. Intell. 20, 1-14 (1998). [CrossRef]
  34. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics Publishing, 1998). [CrossRef]
  35. W. K. Pratt, Digital Image Processing (Wiley, 1991).
  36. L. P. Yaroslavsky, Fundamentals of Digital Optics (Springer, 1996).
  37. J. S. Lim, Two-Dimensional Signal and Image Processing (Prentice-Hall PTR, 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited