OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 11 — Nov. 1, 2007
  • pp: 3427–3431

Dipole–dipole interaction between molecules mediated by a chain of silver nanoparticles

J. Lindberg, K. Lindfors, T. Setälä, and M. Kaivola  »View Author Affiliations

JOSA A, Vol. 24, Issue 11, pp. 3427-3431 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (121 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study the dipole–dipole coupling between two fluorescent molecules in the presence of a chain of metallic nanoparticles. We analyze the spectral behavior of the coupling strength and its dependence on the molecular orientation. Our results show that for certain resonant wavelengths the coupling strength between the molecules is greatly enhanced and is strongly polarization sensitive. We also demonstrate how metallic nanoparticles can be utilized in implementing a polarization-sensitive coupler.

© 2007 Optical Society of America

OCIS Codes
(260.2160) Physical optics : Energy transfer
(260.5740) Physical optics : Resonance
(290.5850) Scattering : Scattering, particles

ToC Category:
Physical Optics

Original Manuscript: May 15, 2007
Manuscript Accepted: August 11, 2007
Published: October 3, 2007

J. Lindberg, K. Lindfors, T. Setälä, and M. Kaivola, "Dipole-dipole interaction between molecules mediated by a chain of silver nanoparticles," J. Opt. Soc. Am. A 24, 3427-3431 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," in Advances in Chemical Physics, I.Prigogine and S.A.Rice, eds. (Wiley, 1978), Vol. 37, pp. 1-65. [CrossRef]
  2. W. L. Barnes, "Fluorescence near interfaces: the role of photonic mode density," J. Mod. Opt. 45, 661-699 (1998). [CrossRef]
  3. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  4. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, "Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle," Opt. Commun. 261, 368-375 (2006). [CrossRef]
  5. G. Colas des Francs, C. Girard, and O. J. F. Martin, "Fluorescence resonant energy transfer in the optical near field," Phys. Rev. A 67, 053805 (2003). [CrossRef]
  6. G. S. Agarwal and S. D. Gupta, "Microcavity-induced modification of the dipole-dipole interaction," Phys. Rev. A 57, 667-670 (1998). [CrossRef]
  7. P. Andrew and W. L. Barnes, "Förster energy transfer in an optical microcavity," Science 290, 785-788 (2000). [CrossRef] [PubMed]
  8. R. L. Hartman and P. T. Leung, "Dynamical theory for modeling dipole-dipole interactions in a microcavity: the Green dyadic approach," Phys. Rev. B 64, 193308 (2001). [CrossRef]
  9. X. M. Hua and J. I. Gersten, "Enhanced energy transfer between donor and acceptor molecules near a long wire or fiber," J. Chem. Phys. 91, 1279-1286 (1989). [CrossRef]
  10. F. Le Kien, S. D. Gupta, K. P. Nayak, and K. Hakuta, "Nanofiber-mediated radiative transfer betweeen two distant atoms," Phys. Rev. A 72, 063815 (2006). [CrossRef]
  11. M. Cho and R. J. Silbey, "Suppression and enhancement of van der Waals interactions," J. Chem. Phys. 104, 8730-8741 (1996). [CrossRef]
  12. V. V. Klimov and V. S. Letokhov, "Resonance interaction between two atomic dipoles separated by the surface of a dielectric nanosphere," Phys. Rev. A 58, 3235-3247 (1998). [CrossRef]
  13. C. Girard, O. J. F. Martin, G. Lévèque, G. Colas des Francs, and A. Dereux, "Generalized Bloch equations for optical interactions in confined geometries," Chem. Phys. Lett. 404, 44-48 (2005). [CrossRef]
  14. P. Andrew and W. L. Barnes, "Energy transfer across a metal film mediated by surface plasmon polaritons," Science 306, 1002-1005 (2004). [CrossRef] [PubMed]
  15. L. Dobrzynski, A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, M. Bouazaoui, J. P. Vilcot, H. Al Wahsh, P. Zielinski, and J. P. Vigneron, "Simple nanometric plasmon multiplexer," Phys. Rev. E 69, 035601R (2004). [CrossRef]
  16. M. Sukharev and T. Seideman, "Phase and polarization control as a route to plasmonic nanodevices," Nano Lett. 6, 715-719 (2006). [CrossRef] [PubMed]
  17. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  18. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-R16359 (2000). [CrossRef]
  19. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, "Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides," Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  20. W. H. Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004). [CrossRef]
  21. C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004). [CrossRef] [PubMed]
  22. G. Colas des Francs, C. Girard, J.-C. Weeber, and A. Dereux, "Near field optical adressing of single molecules in coplanar geometry: a theoretical study," J. Microsc. 202, 307-312 (2001). [CrossRef]
  23. W. Nomura, T. Yatsui, and M. Ohtsu, "Efficient optical near-field energy transfer along an Au nanodot coupler with size-dependent resonance," Appl. Phys. B 84, 257-259 (2006). [CrossRef]
  24. L. Novotny, B. Hecht, and D. W. Pohl, "Interference of locally excited surface plasmons," J. Appl. Phys. 81, 1798-1806 (1997). [CrossRef]
  25. P. B. Johnson and R. W. Christy, "Optical constants of noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited