OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 11 — Nov. 1, 2007
  • pp: 3456–3466

Reconstructing a thin absorbing obstacle in a half-space of tissue

Pedro González-Rodríguez, Arnold D. Kim, and Miguel Moscoso  »View Author Affiliations


JOSA A, Vol. 24, Issue 11, pp. 3456-3466 (2007)
http://dx.doi.org/10.1364/JOSAA.24.003456


View Full Text Article

Enhanced HTML    Acrobat PDF (1023 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We solve direct and inverse obstacle-scattering problems in a half-space composed of a uniform absorbing and scattering medium. Scattering is sharply forward-peaked, so we use the modified Fokker–Planck approximation to the radiative transport equation. The obstacle is an absorbing inhomogeneity that is thin with respect to depth. Using the first Born approximation, we derive a method to recover the depth and shape of the absorbing obstacle. This method requires only plane-wave illumination at two incidence angles and a detector with a fixed numerical aperture. First we recover the depth of the obstacle through solution of a simple nonlinear least-squares problem. Using that depth, we compute a point-spread function explicitly. We use that point-spread function in a standard deconvolution algorithm to reconstruct the shape of the obstacle. Numerical results show the utility of this method even in the presence of measurement noise.

© 2007 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.3200) Scattering : Inverse scattering

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 11, 2007
Revised Manuscript: August 17, 2007
Manuscript Accepted: August 22, 2007
Published: October 10, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Pedro González-Rodríguez, Arnold D. Kim, and Miguel Moscoso, "Reconstructing a thin absorbing obstacle in a half-space of tissue," J. Opt. Soc. Am. A 24, 3456-3466 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-11-3456


Sort:  Year  |  Journal  |  Reset  

References

  1. J. P. Van Hounten, D. A. Benaron, S. Spilman, and D. K. Stevenson, "Imaging brain injury using time-resolved near infrared light scanning," Pediatr. Res. 39, 470-476 (1996). [CrossRef]
  2. S. R. Hintz, W. F. Cheong, J. P. Van Hounten, D. K. Stevenson, and D. A. Benaron, "Bedside imaging of intracranial hemorrhage in the neonate using light: comparison with ultrasound, computed tomography, and magnetic resonance imaging," Pediatr. Res. 45, 54-59 (1999). [CrossRef] [PubMed]
  3. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999). [CrossRef]
  4. X. F. Cheng and D. A. Boas, "Systematic diffuse optical image errors resulting from uncertainty in the background optical properties," Opt. Express 4, 299-307 (1999). [CrossRef] [PubMed]
  5. D. A. Benaron, S. R. Hintz, A. Villringer, D. A. Boas, A. Klein-Schmidt, J. Frahm, C. Hirth, H. Obrig, J. P. Van Hounten, E. L. Kermit, W. Cheong, and D. K. Stevenson, "Noninvasive functional imaging of human brain using light," J. Cereb. Blood Flow Metab. 20, 469-477 (2000). [CrossRef] [PubMed]
  6. A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, "Three-dimensional optical tomography of hemodynamics in the human head," Opt. Express 9, 272-286 (2001). [CrossRef] [PubMed]
  7. J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004). [CrossRef] [PubMed]
  8. B. Monsees, J. M. Destouet, and W. G. Totty, "Light scanning versus mammography in breast-cancer detection," Radiology 163, 463-465 (1987). [PubMed]
  9. D. Grosenick, H. Wabnitz, H. H. Rinneberg, K. T. Moesta, and P. M. Schlaq, "Development of a time-domain optical mammograph and first in vivo applications," Appl. Opt. 38, 2927-2943 (1999). [CrossRef]
  10. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Scweinger, S. R. Arridge and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40, 3278-3287 (2001). [CrossRef]
  11. J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, "Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform," J. Biomed. Opt. 6, 122-133 (2001). [CrossRef] [PubMed]
  12. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In-vivo tomographic imaging of near infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002). [CrossRef]
  13. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeiter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  14. R. Weissleder and U. Mahmood, "Molecular Imaging," Radiology 219, 316-333 (2001). [PubMed]
  15. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, 1997).
  16. A. D. Kim and J. B. Keller, "Light propagation in biological tissue," J. Opt. Soc. Am. A 20, 92-98 (2003). [CrossRef]
  17. Y. L. Kim, Y. Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quantum Electron. 9, 243-257 (2003). [CrossRef]
  18. O. Dorn, "A transport-backtransport method for optical tomography," Inverse Probl. 14, 1107-1130 (1998). [CrossRef]
  19. O. Dorn, "Shape reconstruction in scattering media with voids using a transport model and level sets," Can. Appl. Math. Quart. 10, 239-275 (2002).
  20. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, "The inverse source problem based on the radiative transfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2005). [CrossRef]
  21. A. D. Kim and M. Moscoso, "Radiative transport theory for optical molecular imaging," Inverse Probl. 22, 23-42 (2006). [CrossRef]
  22. A. D. Kim, C. Hayakawa, and V. Venugopalan, "Estimating tissue optical properties using the Born approximation of the transport equation," Opt. Lett. 31, 1088-1090 (2006). [CrossRef] [PubMed]
  23. A. D. Kim and M. Moscoso, "Beam propagation in sharply peaked forward scattering media," J. Opt. Soc. Am. A 21, 797-803 (2004). [CrossRef]
  24. L.-H. Wang and S. L. Jacques, "Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium," Appl. Opt. 34, 2362-2366 (1995). [CrossRef] [PubMed]
  25. S.-P. Lin, L.-H. Wang, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties using oblique incidence optical fiber reflectometry," Appl. Opt. 36, 136-143 (1997). [CrossRef] [PubMed]
  26. G. Marquez and L.-H. Wang, "White light oblique incidence reflectometer for measuring absorption and reduced scattering spectra of tissue-like turbid media," Opt. Express 1, 454-460 (1997). [CrossRef] [PubMed]
  27. M. Mehrubeoglu, N. Kehtarnavaz, G. Marquez, M. Duvic, and L.-H. Wang, "Skin lesion classification using diffuse reflectance spectroscopic imaging with oblique incidence," Appl. Opt. 41, 182-192 (2002). [CrossRef] [PubMed]
  28. A. Garcia-Uribe, N. Kehtarnavaz, G. Marquez, V. Prieto, M. Duvic, and L.-H. Wang, "Skin cancer detection using spectroscopic oblique-incidence reflectometry: classification and physiological origins," Appl. Opt. 43, 2643-2650 (2004). [CrossRef] [PubMed]
  29. A. D. Kim, "Transport theory for light propagation in biological tissue," J. Opt. Soc. Am. A 21, 820-827 (2004). [CrossRef]
  30. A. K. Dunn and D. A. Boas, "Transport-based image reconstruction in turbid media with small source-detector separations," Opt. Lett. 25, 1777-1779 (2000). [CrossRef]
  31. E. M. C. Hillman, D. A. Boas, A. M. Dale and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004). [CrossRef] [PubMed]
  32. M. Schweiger, S. R. Arridge, O. Dorn, A. Zacharopoulos, and V. Kolehmainen, "Reconstructing absorption and diffusion shape profiles in optical tomography using a level set technique," Opt. Lett. 31, 471-473 (2006). [CrossRef] [PubMed]
  33. S. R. Arridge, O. Dorn, J. P. Kaipio, V. Kolehmainen, M. Schweiger, T. Tarvainen, M. Vauhkonen, and A. Zacharopoulos, "Reconstruction of subdomain boundaries of piecewise constant coefficients of the radiative transfer equation from optical tomography data," Inverse Probl. 22, 2175-2196 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited