OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 11 — Nov. 1, 2007
  • pp: 3619–3635

Intensity-only signal-subspace-based imaging

Edwin A. Marengo, Ronald D. Hernandez, and Hanoch Lev-Ari  »View Author Affiliations

JOSA A, Vol. 24, Issue 11, pp. 3619-3635 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1610 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A signal-subspace method is derived for the localization and imaging of unknown scatterers using intensity-only wave field data (lacking field phase information). The method is an extension of the time-reversal multiple-signal-classification imaging approach to intensity-only data. Of importance, the derived methodology works within exact scattering theory including multiple scattering.

© 2007 Optical Society of America

OCIS Codes
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(100.3190) Image processing : Inverse problems
(100.6640) Image processing : Superresolution
(110.1650) Imaging systems : Coherence imaging
(290.3200) Scattering : Inverse scattering

ToC Category:
Image Processing

Original Manuscript: May 10, 2007
Revised Manuscript: September 8, 2007
Manuscript Accepted: September 10, 2007
Published: October 29, 2007

Edwin A. Marengo, Ronald D. Hernandez, and Hanoch Lev-Ari, "Intensity-only signal-subspace-based imaging," J. Opt. Soc. Am. A 24, 3619-3635 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. G. Gbur and E. Wolf, "Diffraction tomography without phase information," Opt. Lett. 27, 1890-1892 (2002). [CrossRef]
  2. G. Gbur and E. Wolf, "The information content of the scattered intensity in diffraction tomography," Inf. Sci. (N.Y.) 162, 3-20 (2004). [CrossRef]
  3. G. Gbur and E. Wolf, "Hybrid diffraction tomography without phase information," J. Opt. Soc. Am. A 19, 2194-2202 (2002). [CrossRef]
  4. G. Gbur, M. A. Anastasio, Y. Huang, and D. Shi, "Spherical-wave intensity diffraction tomography," J. Opt. Soc. Am. A 22, 230-238 (2005). [CrossRef]
  5. M. A. Anastasio, D. Shi, Y. Huang, and G. Gbur, "Image reconstruction in spherical-wave intensity diffraction tomography," J. Opt. Soc. Am. A 22, 2651-2661 (2005). [CrossRef]
  6. A. J. Devaney, "Diffraction tomographic reconstruction from intensity data," IEEE Trans. Image Process. 1, 221-228 (1992). [CrossRef] [PubMed]
  7. M. H. Maleki, A. J. Devaney, and A. Schatzberg, "Tomographic reconstruction from optical scattered intensities," J. Opt. Soc. Am. A 10, 1356-1363 (1992). [CrossRef]
  8. M. H. Maleki and A. J. Devaney, "Phase retrieval and intensity-only reconstruction algorithms for optical diffraction tomography," J. Opt. Soc. Am. A 10, 1086-1092 (1993). [CrossRef]
  9. O. M. Bucci, L. Crocco, M. D'Urso, and T. Isernia, "Inverse scattering from phaseless measurements of the total field on open lines," J. Opt. Soc. Am. A 23, 2566-2577 (2006). [CrossRef]
  10. L. Crocco, M. D'Urso, and T. Isernia, "Inverse scattering from phaseless measurements of the total field on a closed curve," J. Opt. Soc. Am. A 21, 622-631 (2004). [CrossRef]
  11. A. Litman and K. Belkebir, "Two-dimensional inverse profiling problem using phaseless data," J. Opt. Soc. Am. A 23, 2737-2746 (2006). [CrossRef]
  12. T. Takenaka, D. J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Opt. Technol. Lett. 14, 182-188 (1997). [CrossRef]
  13. S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Trans. Geosci. Remote Sens. 41, 2745-2753 (2003). [CrossRef]
  14. H. Lev-Ari and A. J. Devaney, "The time-reversal technique re-interpreted: Subspace-based signal processing for multi-static target location," Proc. of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop (IEEE, 2000)509-513.
  15. C. Prada and J. L. Thomas, "Experimental subwavelength localization of scatterers by decomposition of the time reversal operator interpreted as a covariance matrix," J. Acoust. Soc. Am. 114, 235-243 (2003). [CrossRef] [PubMed]
  16. S. K. Lehman and A. J. Devaney, "Transmission mode time-reversal super-resolution imaging," J. Acoust. Soc. Am. 113, 2742-2753 (2003). [CrossRef] [PubMed]
  17. F. K. Gruber, E. A. Marengo, and A. J. Devaney, "Time-reversal imaging with multiple signal classification considering multiple scattering between the targets," J. Acoust. Soc. Am. 115, 3042-3047 (2004). [CrossRef]
  18. A. J. Devaney, E. A. Marengo, and F. K. Gruber, "Time-reversal-based imaging and inverse scattering of multiply scattering point targets," J. Acoust. Soc. Am. 118, 3129-3138 (2005). [CrossRef]
  19. A. Kirsch, "The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media," Inverse Probl. 18, 1025-1040 (2002). [CrossRef]
  20. S. Hou, K. Solna, and H. Zhao, "Imaging of location and geometry for extended targets using the response matrix," J. Comput. Phys. 199, 317-338 (2004). [CrossRef]
  21. S. Hou, K. Solna, and H. Zhao, "A direct imaging algorithm for extended targets," Inverse Probl. 22, 1151-1178 (2006). [CrossRef]
  22. S. Hou, K. Solna, and H. Zhao, "A direct imaging method using far field data," Inverse Probl. 23, 1533-1546 (2007). [CrossRef]
  23. E. A. Marengo, F. K. Gruber, and F. Simonetti, "Time-reversal MUSIC imaging of extended targets," IEEE Trans. Image Process. 16, 1967-1984 (2007). [CrossRef] [PubMed]
  24. F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory (Springer, 2006).
  25. R. Potthast, Point Sources and Multipoles in Inverse Scattering Theory (Chapman & Hall/CRC, 2001). [CrossRef]
  26. R. O. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas Propag. 34, 276-280 (1986). [CrossRef]
  27. C. W. Therrien, Discrete Random Signals and Statistical Signal Processing (Prentice Hall, 1992).
  28. E. A. Marengo and F. K. Gruber, "Subspace-based localization and inverse scattering of multiply scattering point targets," EURASIP J. Advances in Signal Processing 2007, 17342, 16 pp. (2007).
  29. J. H. Taylor, Scattering Theory (Wiley, 1972).
  30. R. Pierri and A. Tamburrino, "On the local minima problem in conductivity imaging via a quadratic approach," Inverse Probl. 13, 1547-1568 (1997). [CrossRef]
  31. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley, 1983).
  32. A. J. Devaney, "Super-resolution processing of multi-static data using time-reversal and MUSIC," Northeastern University, 2000-year report available at http://www.ece.neu.edu/faculty/devaney/ajd/preprints.htm.
  33. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (Institute of Physics, 1998). [CrossRef]
  34. R. Pierri and F. Soldovieri, "On the information content of the radiated fields in the near zone over bounded domains," Inverse Probl. 14, 321-337 (1998). [CrossRef]
  35. D. A. B. Miller, "Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths," Appl. Opt. 39, 1681-1699 (2000). [CrossRef]
  36. P. C. Hansen, Rank Deficient and Ill-Posed Problems: Numerical Aspects of Linear Inversion (SIAM, 1998). [CrossRef]
  37. M. Tanter, J.-L. Thomas, and M. Fink, "Time reversal and the inverse filter," J. Acoust. Soc. Am. 108, 223-234 (2000). [CrossRef]
  38. E. A. Marengo, "Further theoretical considerations for time-reversal MUSIC imaging of extended scatterers," invited paper, in IEEE Statistical Signal Processing Workshop 2007, Madison, Wisconsin, USA (IEEE, 2007), pp. 304-306. ISBN: 978-1-4244-1198-6. [CrossRef]
  39. L. L. Foldy, "The multiple scattering of waves: I. General theory of isotropic scattering by randomly distributed scatterers," Phys. Rev. 67, 107-119 (1945). [CrossRef]
  40. M. Lax, "Multiple scattering of waves," Rev. Mod. Phys. 23, 287-310 (1951). [CrossRef]
  41. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, 1997).
  42. L. Tsang, J. A. Kong, K.-H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, 2001). [CrossRef]
  43. R. K. Snieder and J. A. Scales, "Time-reversed imaging as a diagnostic of wave and particle chaos," Phys. Rev. E 58, 5668-5675 (1998). [CrossRef]
  44. E. A. Marengo and F. K. Gruber, "Non-iterative analytical formula for inverse scattering of multiply scattering point targets," J. Acoust. Soc. Am. 120, 3782-3788 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited