OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 12 — Dec. 1, 2007
  • pp: 3700–3707

Characteristic functions of Hartmann–Shack wavefront sensors and laser-ray-tracing aberrometers

Salvador Bará  »View Author Affiliations


JOSA A, Vol. 24, Issue 12, pp. 3700-3707 (2007)
http://dx.doi.org/10.1364/JOSAA.24.003700


View Full Text Article

Enhanced HTML    Acrobat PDF (248 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

It is shown that the aberration estimated at any point of the pupil using wavefront slope aberrometers such as Hartmann–Shack wavefront sensors or laser ray tracers is a spatial average of the actual aberration weighted by a characteristic function that depends on the aberrometer design and on the estimation procedure. This characteristic function, whose explicit form is given here for wavefront slope aberrometers using either modal or zonal estimators, may be useful in analyzing some basic aspects of the aberrometer performance. It is also instrumental in establishing the links between the statistical properties of the actual and the estimated aberrations. Explicit formulas are given to show in terms of this function how the bias arises in the first- and second-order statistics of the retrieved aberrations. This approach is mathematically equivalent to the analysis of the effects of modal coupling (cross-coupling and aliasing). It may provide, however, some complementary insight.

© 2007 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: March 5, 2007
Revised Manuscript: August 10, 2007
Manuscript Accepted: September 16, 2007
Published: November 14, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Salvador Bará, "Characteristic functions of Hartmann-Shack wavefront sensors and laser-ray-tracing aberrometers," J. Opt. Soc. Am. A 24, 3700-3707 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-12-3700


Sort:  Year  |  Journal  |  Reset  

References

  1. R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).
  2. F. Merkle, "Adaptive optics," in International Trends in Optics, J.W.Goodman, ed. (Academic, 1991), Chap. 26, pp. 375-390.
  3. J. Primot, G. Rousset, and J. C. Fontanella, "Deconvolution from wave-front sensing: a new technique for compensating turbulence-degraded images," J. Opt. Soc. Am. A 7, 1589-1608 (1990). [CrossRef]
  4. D. Dayton, B. Pierson, B. Spielbusch, and J. Gonglewski, "Atmospheric structure function measurements with a Shack-Hartmann wave-front sensor," Opt. Lett. 17, 1737-1739 (1992). [CrossRef] [PubMed]
  5. T. W. Nicholls, G. D. Boreman, and J. C. Dainty, "Use of a Shack-Hartmann wave-front sensor to measure deviations from a Kolmogorov phase spectrum," Opt. Lett. 20, 2460-2462 (1995). [CrossRef] [PubMed]
  6. E. E. Silbaugh, B. M. Welsh, and M. C. Roggemann, "Characterization of atmospheric turbulence phase statistics using wave-front slope measurements," J. Opt. Soc. Am. A 13, 2453-2460 (1996). [CrossRef]
  7. C. Rao, W. Jiang, and N. Ling, "Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack-Hartmann wave-front sensor," Opt. Lett. 24, 1008-1010 (1999). [CrossRef]
  8. T. Kohno and S. Tanaka, "Figure measurement of concave mirror by fiber-grating Hartmann test," Opt. Rev. 1, 118-120 (1994). [CrossRef]
  9. N. S. Prasad, S. M. Doyle, and M. K. Giles, "Collimation and beam alignment: testing and estimation using liquid-crystal televisions," Opt. Eng. (Bellingham) 35, 1815-1819 (1996). [CrossRef]
  10. H. J. Tiziani and J. H. Chen, "Shack-Hartmann sensor for fast infrared wave-front testing," J. Mod. Opt. 44, 535-541 (1997). [CrossRef]
  11. G. Artzner, "Aspherical wavefront measurements: Shack-Hartmann numerical and practical experiments," Pure Appl. Opt. 7, 435-448 (1998). [CrossRef]
  12. J. Pfund, N. Lindlein, J. Schwider, R. Burow, Th. Blumel, and K.-E. Elssner, "Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack-Hartmann sensor," Opt. Lett. 23, 742-744 (1998). [CrossRef]
  13. J. Ares, T. Mancebo, and S. Bará, "Position and displacement sensing with Shack-Hartmann wavefront sensors," Appl. Opt. 39, 1511-1520 (2000). [CrossRef]
  14. J. Liang, B. Grimm, S. Goelz, and J. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  15. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  16. P. M. Prieto, F. Vargas-Martin, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  17. R. Navarro and M. A. Losada, "Aberrations and relative efficiency of light pencils in the living human eye," Optom. Vision Sci. 74, 540-547 (1997). [CrossRef]
  18. R. Navarro, E. Moreno, and C. Dorronsoro, "Monochromatic aberrations and point-spread functions of the human eye across the visual field," J. Opt. Soc. Am. A 15, 2522-2529 (1998). [CrossRef]
  19. R. Navarro and E. Moreno-Barriuso, "Laser ray-tracing method for optical testing," Opt. Lett. 24, 951-953 (1999). [CrossRef]
  20. R. H. Webb, C. M. Penney, and K. P. Thompson, "Measurement of ocular wavefront distortion with a spatially resolved refractometer," Appl. Opt. 31, 3678-3686 (1992). [CrossRef] [PubMed]
  21. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, "Measurement of the wavefront aberration of the eye by a fast psychophysical procedure," J. Opt. Soc. Am. A 15, 2449-2456 (1998). [CrossRef]
  22. R. H. Webb, C. M. Penney, J. Sobiech, P. R. Staver, and S. A. Burns, "SRR (spatially resolved refractometer): a null-seeking aberrometer," Appl. Opt. 42, 736-744 (2003). [CrossRef] [PubMed]
  23. E. Moreno-Barriuso, S. Marcos, R. Navarro, and S. A. Burns, "Comparing laser ray tracing, spatially resolved refractometer and Hartmann-Shack sensor to measure the ocular wavefront aberration," Optom. Vision Sci. 78, 152-156 (2001). [CrossRef]
  24. E. Moreno-Barriuso and R. Navarro, "Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye," J. Opt. Soc. Am. A 17, 974-985 (2000). [CrossRef]
  25. S. Marcos, L. Díaz-Santana, L. Llorente, and C. Dainty, "Ocular aberrations with ray tracing and Shack-Hartmann wave-front sensors: Does polarization play a role?" J. Opt. Soc. Am. A 19, 1063-1072 (2002). [CrossRef]
  26. L. Llorente, L. Díaz-Santana, D. Lara-Saucedo, and S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003). [CrossRef]
  27. P. Rodríguez, R. Navarro, J. Arines, and S. Bará, "A new calibration set of phase plates for ocular aberrometers," J. Refract. Surg. 22, 275-284 (2006). [PubMed]
  28. R. Cubalchini, "Modal wavefront estimation from phase derivative measurements," J. Opt. Soc. Am. 69, 972-977 (1979). [CrossRef]
  29. W. H. Southwell, "Wave-front estimation from wave-front slope measurements," J. Opt. Soc. Am. 70, 998-1006 (1980). [CrossRef]
  30. R. H. Hudgin, "Wave-front reconstruction for compensated imaging," J. Opt. Soc. Am. 67, 375-378 (1977). [CrossRef]
  31. S. N. Bezdid'ko, "The use of Zernike polynomials in optics," Sov. J. Opt. Technol. 41, 425-429 (1974).
  32. M. Born and E. Wolf, Principles of Optics, pp. 464-466, 767-772, (Cambridge U. Press, 1998).
  33. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and VSIA Standards Taskforce Members, "Standards for reporting the optical aberrations of eyes," in Vision Science and Its Applications 2000, V.Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 232-244.
  34. J. Herrmann, "Cross coupling and aliasing in modal wave-front estimation," J. Opt. Soc. Am. 71, 989-992 (1981). [CrossRef]
  35. L. Díaz-Santana, G. Walker, and S. X. Bará, "Sampling geometries for ocular aberrometry: a model for evaluation of performance," Opt. Express 13, 8801-8818 (2005). [CrossRef]
  36. O. Soloviev and G. Vdovin, "Hartmann-Shack test with random masks for modal wavefront reconstruction," Opt. Express 13, 9570-9584 (2005). [CrossRef]
  37. S. Bará, P. Prado, J. Arines, and J. Ares, "Estimation-induced correlations of the Zernike coefficients of the eye aberration," Opt. Lett. 31, 2646-2648 (2006). [CrossRef]
  38. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  39. V. I. Tatarskii, The Propagation of Waves in the Turbulent Atmosphere (Nauka, Moscow, 1967), pp. 385-390 (in Russian).
  40. M. R. Teague, "Irradiance moments: their propagation and use for unique retrieval of phase," J. Opt. Soc. Am. 72, 1199-1209 (1982). [CrossRef]
  41. S. Bará, "Measuring eye aberrations with Hartmann-Shack wave-front sensors: Should the irradiance distribution across the eye pupil be taken into account?" J. Opt. Soc. Am. A 20, 2237-2245 (2003). [CrossRef]
  42. P. Ehrenfest, "Notes on the approximate validity of quantum mechanics," Z. Phys. 45, 455-457 (1927) (in German). [CrossRef]
  43. R. J. Cook, "Beam wander in a turbulent medium: An application of Ehrenfest's theorem," J. Opt. Soc. Am. 65, 942-948 (1975). [CrossRef]
  44. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, and G. Rousset, "Comparison of centroid computation algorithms in a Shack-Hartmann sensor," Mon. Not. R. Astron. Soc. 371, 323-336 (2006). [CrossRef]
  45. R. Irwan and R. G. Lane, "Analysis of optimal centroid estimation applied to Shack-Hartmann sensing," Appl. Opt. 38, 6737-6743 (1999). [CrossRef]
  46. D. A. Montera, B. M. Welsh, M. C. Roggemann, and D. W. Ruck, "Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation," Appl. Opt. 35, 5747-5757 (1996). [CrossRef] [PubMed]
  47. J.-M. Ruggiu, C. J. Solomon, and G. Loos, "Gram-Charlier matched filter for Shack-Hartmann sensing at low light levels," Opt. Lett. 23, 235-237 (1998). [CrossRef]
  48. J. Arines and J. Ares, "Minimum variance centroid thresholding," Opt. Lett. 27, 497-499 (2002). [CrossRef]
  49. V. Laude, S. Olivier, C. Dirson, and J.-P. Huignard, "Hartmann wave-front scanner," Opt. Lett. 24, 1796-1798 (1999). [CrossRef]
  50. S. Olivier, V. Laude, and J.-P. Huignard, "Liquid-crystal Hartmann wave-front scanner," Appl. Opt. 39, 3838-3846 (2000). [CrossRef]
  51. J. Primot, "Theoretical description of Shack-Hartmann wave-front sensor," Opt. Commun. 222, 81-92 (2003). [CrossRef]
  52. E. P. Wallner, "Optimal wave-front correction using slope measurements," J. Opt. Soc. Am. 73, 1771-1776 (1983). [CrossRef]
  53. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited