OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 12 — Dec. 1, 2007
  • pp: 3762–3771

4Pi spectral self-interference microscopy

Brynmor J. Davis, Mehmet Dogan, Bennett B. Goldberg, William C. Karl, M. Selim Ünlü, and Anna K. Swan  »View Author Affiliations

JOSA A, Vol. 24, Issue 12, pp. 3762-3771 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (784 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spectral self-interference microscopy (SSM) relies on the balanced collection of light traveling two different paths from the sample to the detector, one direct and the other indirect from a reflecting substrate. The resulting spectral interference effects allow nanometer-scale axial localization of isolated emitters. To produce spectral fringes the difference between the two optical paths must be significant. Consequently, to ensure that both contributions are in focus, a low-numerical-aperture objective lens must be used, giving poor lateral resolution. Here this limitation is overcome using a 4Pi apparatus to produce the requisite two paths to the detector. The resulting instrument generalizes both SSM and 4Pi microscopy and allows a quantification of SSM resolution (rather than localization precision). Specifically, SSM is shown to be subject to the same resolution constraints as 4Pi microscopy.

© 2007 Optical Society of America

OCIS Codes
(100.3020) Image processing : Image reconstruction-restoration
(110.4850) Imaging systems : Optical transfer functions
(110.6880) Imaging systems : Three-dimensional image acquisition
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(170.2520) Medical optics and biotechnology : Fluorescence microscopy

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: May 14, 2007
Revised Manuscript: October 3, 2007
Manuscript Accepted: October 3, 2007
Published: November 21, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Brynmor J. Davis, Mehmet Dogan, Bennett B. Goldberg, William C. Karl, M. Selim Ünlü, and Anna K. Swan, "4Pi spectral self-interference microscopy," J. Opt. Soc. Am. A 24, 3762-3771 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. E. Abbe, "Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung," Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413-468 (1873). [CrossRef]
  2. T. A. Klar and S. W. Hell, "Subdiffraction resolution in far-field fluorescence microscopy," Opt. Lett. 24, 954-956 (1999). [CrossRef]
  3. R. Heintzmann and T. M. Jovin, "Saturated patterned excitation microscopy--a concept for optical resolution improvement," J. Opt. Soc. Am. A 19, 1599-1609 (2002). [CrossRef]
  4. M. G. L. Gustafsson, "Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution," Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005). [CrossRef] [PubMed]
  5. K. I. Willig, S. O. Rizzoli, V. Westphal, R. Jahn, and S. W. Hell, "STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis," Nature (London) 440, 935-939 (2006). [CrossRef]
  6. T.Basché, W.E.Moerner, M.Orrit, and U.P.Wild, eds., Single-Molecule Optical Detection, Imaging and Spectroscopy (VCH, 1997).
  7. R. J. Ober, S. Ram, and E. S. Ward, "Localization accuracy in single-molecule microscopy," Biophys. J. 86, 1185-1200 (2004). [CrossRef] [PubMed]
  8. S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical microscopes," Multidimens. Syst. Signal Process. 17, 27-57 (2006). [CrossRef]
  9. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, "Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization," Science 300, 2061-2065 (2003). [CrossRef] [PubMed]
  10. A. K. Swan, L. A. Moiseev, C. R. Cantor, B. J. Davis, S. B. Ippolito, W. C. Karl, B. B. Goldberg, and M. S. Ünlü, "Toward nanometer-scale resolution in fluorescence microscopy using spectral self-interference," IEEE J. Sel. Top. Quantum Electron. 9, 294-300 (2003). [CrossRef]
  11. L. Moiseev, C. R. Cantor, M. I. Aksun, M. Dogan, B. B. Goldberg, A. K. Swan, and M. S. Ünlü, "Spectral self-interference fluorescence microscopy," J. Appl. Phys. 96, 5311-5315 (2004). [CrossRef]
  12. B. J. Davis, A. K. Swan, M. S. Ünlü, W. C. Karl, B. B. Goldberg, J. C. Schotland, and P. S. Carney, "Spectral self-interference microscopy for low-signal nanoscale axial imaging," J. Opt. Soc. Am. A 24, 3587-3599 (2007). [CrossRef]
  13. L. Moiseev, M. S. Ünlü, A. K. Swan, B. B. Goldberg, and C. R. Cantor, "DNA conformation on surfaces measured by fluorescence self-interference," Proc. Natl. Acad. Sci. U.S.A. 103, 2623-2628 (2006). [CrossRef] [PubMed]
  14. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  15. S. Hell and E. H. K. Stelzer, "Properties of a 4Pi confocal fluorescence microscope," J. Opt. Soc. Am. A 9, 2159-2166 (1992). [CrossRef]
  16. S. W. Hell, "Double-scanning microscope," European patent 0491289, 18 December 1990.
  17. M. Schmidt, M. Nagorni, and S. W. Hell, "Subresolution axial distance measurements in far-field fluorescence microscopy with precision of 1 nanometer," Rev. Sci. Instrum. 71, 2742-2745 (2000). [CrossRef]
  18. M. Schrader, S. W. Hell, and H. T. M. van der Voort, "Three-dimensional super-resolution with a 4Pi-confocal microscope using image restoration," J. Appl. Phys. 84, 4033-4042 (1998). [CrossRef]
  19. A. S. van de Nes, L. Billy, S. F. Pereira, and J. J. M. Braat, "Calculation of the vectorial field distribution in a stratified focal region of a high numerical aperture imaging system," Opt. Express 12, 1281-1293 (2004). [CrossRef] [PubMed]
  20. H. Kano, S. Jakobs, M. Nagorni, and S. W. Hell, "Dual-color 4Pi-confocal microscopy with 3D-resolution in the 100nm range," Ultramicroscopy 90, 207-213 (2002). [CrossRef] [PubMed]
  21. S. W. Hell and M. Nagorni, "4Pi confocal microscopy with alternate interference," Opt. Lett. 23, 1567-1569 (1998). [CrossRef]
  22. B. Richards and E. Wolf, "Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  23. M. R. Arnison and C. J. R. Sheppard, "A 3D vectorial optical transfer function suitable for arbitrary pupil functions," Opt. Commun. 211, 53-63 (2002). [CrossRef]
  24. M. Nagorni and S. W. Hell, "Coherent use of opposing lenses for axial resolution increase in fluorescence microscopy. I. Comparative study of concepts," J. Opt. Soc. Am. A 18, 36-48 (2001). [CrossRef]
  25. C. J. R. Sheppard, "The spatial frequency cut-off in three-dimensional imaging," Optik (Stuttgart) 72, 131-133 (1986).
  26. C. J. R. Sheppard, "The spatial frequency cut-off in three-dimensional imaging II," Optik (Stuttgart) 74, 128-129 (1986).
  27. M. G. L. Gustafsson, "Extended resolution fluorescence microscopy," Curr. Opin. Struct. Biol. 9, 627-634 (1999). [CrossRef] [PubMed]
  28. C. J. R. Sheppard and M. Gu, "Three-dimensional transfer functions for high-aperture systems," J. Opt. Soc. Am. A 11, 593-598 (1994). [CrossRef]
  29. M. Gu and C. J. R. Sheppard, "Three-dimensional transfer functions in 4Pi confocal microscopes," J. Opt. Soc. Am. A 11, 1619-1627 (1994). [CrossRef]
  30. C. W. McCutchen, "Generalized aperture and the three-dimensional diffraction image," J. Opt. Soc. Am. 54, 240-244 (1964). [CrossRef]
  31. C. W. McCutchen, "Generalized aperture and the three-dimensional diffraction image: Erratum," J. Opt. Soc. Am. A 19, 1781 (2002). [CrossRef]
  32. B. J. Davis, W. C. Karl, A. K. Swan, M. S. Ünlü, and B. B. Goldberg, "Capabilities and limitations of pupil-plane filters for superresolution and image enhancement," Opt. Express 12, 4150-4156 (2004). [CrossRef] [PubMed]
  33. P. J. Verveer, M. J. Gemkow, and T. M. Jovin, "A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy," J. Microsc. 193, 50-61 (1999). [CrossRef]
  34. M. Nagorni and S. W. Hell, "Coherent use of opposing lenses for axial resolution increase. II. Power and limitation of nonlinear image restoration," J. Opt. Soc. Am. A 18, 49-54 (2001). [CrossRef]
  35. E. H. K. Stelzer, "Contrast, resolution, pixelation, dynamic range and signal-to-noise ratio: Fundamental limits to resolution in fluorescence light microscopy," J. Microsc. 189, 15-24 (1998). [CrossRef]
  36. M. C. Lang, J. Engelhardt, and S. W. Hell, "4Pi microscopy with linear fluorescence excitation," Opt. Lett. 32, 259-261 (2007). [CrossRef] [PubMed]
  37. I. J. Cox and C. J. R. Sheppard, "Information capacity and resolution in an optical system," J. Opt. Soc. Am. A 3, 1152-1158 (1986). [CrossRef]
  38. M. Dogan, B. B. Goldberg, A. K. Swan, and M. S. Ünlü, "4Pi spectral self-interference fluorescence microscopy," presented at OSA Frontiers in Optics 2006/Laser Science XXII, Rochester, New York, October 8-12, 2006.
  39. A. Bilenca, A. Ozcan, B. Bouma, and G. Tearney, "Fluorescence coherence tomography," Opt. Express 14, 7134-7143 (2006). [CrossRef] [PubMed]
  40. A. Bilenca, T. Lasser, A. Ozcan, R. A. Leitgeb, B. E. Bouma, and G. J. Tearney, "Image formation in fluorescence coherence-gated imaging through scattering media," Opt. Express 15, 2810-2821 (2007). [CrossRef] [PubMed]
  41. S. Ram, E. S. Ward, and R. J. Ober, "Beyond Rayleigh's criterion: A resolution measure with application to single-molecule microscopy," Proc. Natl. Acad. Sci. U.S.A. 103, 4457-4462 (2006). [CrossRef] [PubMed]
  42. M. Schrader, K. Bahlmann, G. Giese, and S. W. Hell, "4Pi-confocal imaging in fixed biological specimens," Biophys. J. 75, 1659-1668 (1998). [CrossRef] [PubMed]
  43. A. Egner, M. Schrader, and S. W. Hell, "Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multiphoton and 4Pi-microscopy," Opt. Commun. 153, 211-217 (1998). [CrossRef]
  44. D. Baddeley, C. Carl, and C. Cremer, "4Pi microscopy deconvolution with a variable point-spread function," Appl. Opt. 45, 7056-7064 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited