OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 12 — Dec. 1, 2007
  • pp: B1–B12

Human linear template with mammographic backgrounds estimated with a genetic algorithm

Cyril Castella, Craig K. Abbey, Miguel P. Eckstein, Francis R. Verdun, Karen Kinkel, and François O. Bochud  »View Author Affiliations


JOSA A, Vol. 24, Issue 12, pp. B1-B12 (2007)
http://dx.doi.org/10.1364/JOSAA.24.0000B1


View Full Text Article

Enhanced HTML    Acrobat PDF (658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We estimated human observer linear templates underlying the detection of a realistic, spherical mass signal with mammographic backgrounds. Five trained naïve observers participated in two-alternative forced-choice (2-AFC) detection experiments with the signal superimposed on synthetic, clustered lumpy backgrounds (CLBs) in one condition and on nonstationary real mammographic backgrounds in another. Human observer linear templates were estimated using a genetic algorithm. A variety of common model observer templates were computed, and their shapes and associated performances were compared with those of the human observer. The estimated linear templates are not significantly different for stationary CLBs and real mammographic backgrounds. The estimated performance of the linear template compared with that of the human observers is within 5% in terms of percent correct (Pc) for the 2-AFC task. Channelized Hotelling models can fit human performance, but the templates differ considerably from the human linear template. Due to different local statistics, detection efficiency is significantly higher on nonstationary real backgrounds than on globally stationary synthetic CLBs. This finding emphasizes that nonstationary backgrounds need to be described by their local statistics.

© 2007 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(110.3000) Imaging systems : Image quality assessment
(170.3830) Medical optics and biotechnology : Mammography
(330.1880) Vision, color, and visual optics : Detection
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics

History
Original Manuscript: May 1, 2007
Manuscript Accepted: June 29, 2007
Published: September 21, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Cyril Castella, Craig K. Abbey, Miguel P. Eckstein, Francis R. Verdun, Karen Kinkel, and François O. Bochud, "Human linear template with mammographic backgrounds estimated with a genetic algorithm," J. Opt. Soc. Am. A 24, B1-B12 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-12-B1


Sort:  Year  |  Journal  |  Reset  

References

  1. H. H. Barrett and K. Myers, Foundations of Image Science (Wiley, 2004).
  2. P. F. Judy, R. G. Swensson, R. D. Nawfel, and K. H. Chan, "Contrast detail curves for liver CT," Med. Phys. 19, 1167-1174 (1992). [CrossRef] [PubMed]
  3. S. E. Seltzer, P. F. Judy, R. G. Swensson, K. H. Chan, and R. D. Nawfel, "Flattening of the contrast-detail curve for large lesions on liver CT images," Med. Phys. 21, 1547-1555 (1994). [CrossRef] [PubMed]
  4. M. P. Eckstein and J. S. Whiting, "Visual signal detection in structured backgrounds. I. Effect of number of possible spatial locations and signal contrast," J. Opt. Soc. Am. A 13, 1777-1787 (1996). [CrossRef]
  5. C. Herrmann, E. Buhr, and D. Hoeschen, "Bildrauschen und Diagnose von Rundherden in Thoraxaufnahme," Z. Med. Phys. 6, 80-86 (1996).
  6. F. O. Bochud, J.-F. Valley, F. R. Verdun, C. Hessler, and P. Schnyder, "Estimation of the noisy component of anatomical backgrounds," Med. Phys. 26, 1365-1370 (1999). [CrossRef] [PubMed]
  7. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Search for lesions in mammograms: non-Gaussian observer response," Med. Phys. 31, 24-36 (2004). [CrossRef] [PubMed]
  8. W. W. Peterson, T. G. Birdsall, and W. C. Fox, "The theory of signal detectability," IEEE Trans. Inf. Theory 4, 171-212 (1954). [CrossRef]
  9. C. K. Abbey and M. P. Eckstein, "Classification image analysis: estimation and statistical inference for two-alternative forced-choice experiments," J. Vision 2, 66-78 (2002). [CrossRef]
  10. C. K. Abbey and M. P. Eckstein, "Optimal shifted estimates of human-observer templates in two-alternative forced choice experiments," IEEE Trans. Med. Imaging 21, 429-440 (2002). [CrossRef] [PubMed]
  11. C. K. Abbey, M. P. Eckstein, S. S. Shimozaki, A. H. Baydush, D. M. Catarious, and C. E. Floyd, "Human-observer templates for detection of a simulated lesion in mammographic images," Proc. SPIE 4686, 25-36 (2002). [CrossRef]
  12. C. Castella, K. Kinkel, F. Descombes, M. P. Eckstein, P. Sottas, F. R. Verdun, and F. O. Bochud, "Mass detection on real and synthetic mammograms: human observer templates and local statistics," Proc. SPIE 6515, 65150U (2007). [CrossRef]
  13. A. J. Ahumada, Jr., "Classification image weights and internal noise level estimation," J. Vision 2, 121-131 (2002). [CrossRef]
  14. J. A. Solomon, "Noise reveals visual mechanisms of detection and discrimination," J. Vision 2, 105-120 (2002). [CrossRef]
  15. R. F. Murray, P. J. Bennett, and A. B. Sekuler, "Optimal methods for calculating classification images: weighted sums," J. Vision 2, 79-104 (2002). [CrossRef]
  16. A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow, "Efficiency of human visual signal discrimination," Science 214, 93-94 (1981). [CrossRef]
  17. A. E. Burgess and H. Ghandeharian, "Visual signal detection. I. Ability to use phase information," J. Opt. Soc. Am. A 1, 900-905 (1984). [CrossRef] [PubMed]
  18. K. J. Myers, H. H. Barrett, M. C. Borgstrom, D. D. Patton, and G. W. Seeley, "Effect of noise correlation on detectability of disk signals in medical imaging," J. Opt. Soc. Am. A 2, 1752-1759 (1985). [CrossRef] [PubMed]
  19. K. J. Myers, J. P. Rolland, H. H. Barrett, and R. F. Wagner, "Aperture optimization for emission imaging: effect of spatially varying background," J. Opt. Soc. Am. A 7, 1279-1293 (1990). [CrossRef] [PubMed]
  20. A. E. Burgess, F. L. Jacobson, and P. F. Judy, "Lesion detection in digital mammograms," Proc. SPIE 4320, 555-560 (2001). [CrossRef]
  21. A. E. Burgess and P. F. Judy, "Detection in power-law noise: spectrum exponents and CD diagram slopes," Proc. SPIE 5034, 57-62 (2003). [CrossRef]
  22. J. P. Rolland and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992). [CrossRef] [PubMed]
  23. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Statistical texture synthesis of mammographic images with clustered lumpy backgrounds," Opt. Express 4, 33-43 (1999). [CrossRef] [PubMed]
  24. C. Castella, K. Kinkel, F. Descombes, M. P. Eckstein,P.-E. Sottas, F. R. Verdun, and F. O. Bochud, "Mammographic texture synthesis using genetic programming and clustered lumpy background," Proc. SPIE 6146, 238-249 (2006).
  25. Y. Zhang, C. K. Abbey, and M. P. Eckstein, "Adaptative detection mechanisms in globally statistically nonstationary-oriented noise," J. Opt. Soc. Am. A 7, 1549-1558 (2006). [CrossRef]
  26. D. Whitley, "A genetic algorithm tutorial," Stat. Comput. 4, 65-85 (1994). [CrossRef]
  27. J. Beutel, H. L. Kundel, and R. L. Van Metter, Handbook of Medical Imaging Volume 1. Physics and Psychophysics (SPIE, 2000).
  28. P. G. J. Barten, "The SQRI method: a new method for the evaluation of visible resolution on a display," Proc. Soc. Inf. Display 28, 253-262 (1987).
  29. A. E. Burgess, "Statistically defined backgrounds: performance of a modified nonprewhitening observer," J. Opt. Soc. Am. A 11, 1237-1242 (1994). [CrossRef]
  30. R. D. Fiete, H. H. Barrett, W. E. Smith, and K. J. Myers, "The Hotelling trace criterion and its correlation with human observer performance," J. Opt. Soc. Am. A 4, 945-953 (1987). [CrossRef] [PubMed]
  31. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. U.S.A. 90, 9758-9765 (1993). [CrossRef] [PubMed]
  32. H. H. Barrett, C. K. Abbey, and E. Clarkson, "Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood generating functions," J. Opt. Soc. Am. A 15, 1520-1535 (1998). [CrossRef]
  33. F. O. Bochud, C. K. Abbey, and M. P. Eckstein, "Visual signal detection in structured backgrounds. III. Calculation of figures of merit for model observers in statistically nonstationary backgrounds," J. Opt. Soc. Am. A 17, 193-205 (2000). [CrossRef]
  34. K. J. Myers and H. H. Barrett, "The addition of a channel mechanism to the ideal-observer model," J. Opt. Soc. Am. A 4, 2447-2457 (1987). [CrossRef] [PubMed]
  35. C. K. Abbey and H. H. Barrett, "Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability," J. Opt. Soc. Am. A 18, 473-487 (2001). [CrossRef]
  36. C. K. Abbey and H. H. Barrett, "Linear iterative reconstruction algorithms: study of observers performance," in Proceedings of the 14th International Conference on Information Processing in Medical Imaging, Y.Bizais, C.Barillot, and R.Di Paola, eds. (Kluwer Academic, 1995), pp. 65-76.
  37. C. K. Abbey, H. H. Barrett, and D. W. Wilson, "Observer signal-to-noise ratios for the ML-EM algorithm," Proc. SPIE 2712, 47-58 (1996). [CrossRef]
  38. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1991).
  39. S. Vedantham, A. Karellas, S. Suryanarayanan, D. Albagli, S. Han, E. J. Tkaczyk, C. E. Landberg, B. Opsahl-Ong, P. R. Granfors, I. Levis, C. J. D'Orsi, and R. E. Hendrick, "Full breast digital mammography with an amorphous silicon-based flat panel detector: physical characteristics of a clinical prototype," Med. Phys. 27, 558-567 (2000). [CrossRef] [PubMed]
  40. S. Muller, "Full-field digital mammography designed as a complete system," Eur. J. Radiol. 31, 25-34 (1999). [CrossRef] [PubMed]
  41. J. Eng, "JLABROC4: Maximum likelihood estimation of a binormal ROC curve from continuously distributed test results," Version 1.0.1 (The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University), http://www.rad.jhmi.edu/jeng/javarad/roc/main.html.
  42. A. E. Burgess and B. Colborne, "Visual signal detection. IV. Observer inconsistency," J. Opt. Soc. Am. A 5, 617-627 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited