OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 430–443

Optical trapping of spheroidal particles in Gaussian beams

Stephen H. Simpson and Simon Hanna  »View Author Affiliations

JOSA A, Vol. 24, Issue 2, pp. 430-443 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The T matrix method is used to compute equilibrium positions and orientations for spheroidal particles trapped in Gaussian light beams. It is observed that there is a qualitative difference between the behavior of prolate and oblate ellipsoids in linearly polarized Gaussian beams; the former generally orient with the symmetry axis parallel to the beam except at very small particle sizes, while the latter orient with the symmetry axis perpendicular to the beam. In the presence of a circularly polarized beam, it is demonstrated that oblate ellipsoids will experience a torque about the beam axis. However, for a limited range of particle sizes, where the particle dimensions are comparable with the beam waist, the particles are predicted to rotate in a sense counter to the sense of rotation of the circular polarization. This unusual prediction is discussed in some detail.

© 2007 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(290.5850) Scattering : Scattering, particles

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 10, 2006
Revised Manuscript: July 5, 2006
Manuscript Accepted: August 1, 2006

Virtual Issues
Vol. 2, Iss. 3 Virtual Journal for Biomedical Optics

Stephen H. Simpson and Simon Hanna, "Optical trapping of spheroidal particles in Gaussian beams," J. Opt. Soc. Am. A 24, 430-443 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  2. J. E. Molloy and M. J. Padgett, "Lights, action: optical tweezers," Contemp. Phys. 43, 241-258 (2002). [CrossRef]
  3. D. G. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003). [CrossRef] [PubMed]
  4. S. H. Simpson and S. Hanna, "Numerical calculation of interparticle forces arising in association with holographic assembly," J. Opt. Soc. Am. A 23, 1419-1431 (2006). [CrossRef]
  5. S. Bayoudh, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Orientation of biological cells using plane-polarized Gaussian beam optical tweezers," J. Mod. Opt. 50, 1581-1590 (2003). [CrossRef]
  6. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  7. K. Ren, G. Grehan, and G. Gouesbet, "Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects," Opt. Commun. 108, 343-354 (1994). [CrossRef]
  8. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989). [CrossRef]
  9. C. J. F. Böttcher, Theory of Electric Polarization, Vol. 1 of Dielectrics in Static Fields, 2nd ed. (Elsevier, 1973).
  10. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).
  11. A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical application and measurement of torque on microparticles of isotropic nonabsorbing material," Phys. Rev. A 68, 033802 (2003). [CrossRef]
  12. K. D. Bonin, B. Kourmanov, and T. G. Walker, "Light torque nanocontrol, nanomotors and nanorockers," Opt. Express 10, 984-989 (2002). [PubMed]
  13. P. Galajda and P. Ormos, "Orientation of flat particles in optical tweezers by linearly polarized light," Opt. Express 11, 446-451 (2003). [CrossRef] [PubMed]
  14. A. La Porta and M. D. Wang, "Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles," Phys. Rev. Lett. 92, 190801 (2004). [CrossRef] [PubMed]
  15. J.-S. Kim and S.-W. Kim, "Dynamic motion analysis of optically trapped nonspherical particles with off-axis position and arbitrary orientation," Appl. Opt. 39, 4327-4332 (2000). [CrossRef]
  16. R. C. Gauthier, "Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects," J. Opt. Soc. Am. B 14, 3323-3333 (1997). [CrossRef]
  17. R. C. Gauthier, "Optical levitation and trapping of a micro-optic inclined end-surface cylindrical spinner," Appl. Opt. 40, 1961-1973 (2001). [CrossRef]
  18. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  19. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  20. O. Moine and B. Stout, "Optical force calculations in arbitrary beams by use of the vector addition theorem," J. Opt. Soc. Am. B 22, 1620-1631 (2005). [CrossRef]
  21. G. Gouesbet, J. A. Lock, and G. Grehan, "Partial wave representations of laser beams for use in light scattering calculations," Appl. Opt. 34, 2133-2143 (1995). [CrossRef] [PubMed]
  22. G. Gouesbet, "Partial-wave expansions and properties of axisymmetric light beams," Appl. Opt. 35, 1543-1555 (1996). [CrossRef] [PubMed]
  23. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users" Guide, 3rd ed. (Society for Industrial and Applied Mathematics,1999). [CrossRef]
  24. F. Melia, Electrodynamics (The University of Chicago Press, 2001).
  25. P. L. Marston and J. H. Crichton, "Radiation torque on a sphere caused by a circularly-polarized electromagnetic wave," Phys. Rev. A 30, 2508-2516 (1984). [CrossRef]
  26. S. Chang and S. S. Lee, "Optical torque exerted on a homogeneous sphere levitated in the circularly polarizedfundamental-mode of a laser beam," J. Opt. Soc. Am. B 2, 1853-1860 (1985). [CrossRef]
  27. G. Gouesbet, B. Maheu, and G. Grehan, "Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation," J. Opt. Soc. Am. A 5, 1427-1443 (1988). [CrossRef]
  28. P. Barber, "Resonance electromagnetic absorption by nonspherical dielectric objects," IEEE Trans. Microwave Theory Tech. 25, 373-381 (1977). [CrossRef]
  29. A. Mugnai and W. Wiscombe, "Scattering of radiation by moderately nonspherical particles," J. Atmos. Sci. 37, 1291-1307 (1980). [CrossRef]
  30. V. Varadan, A. Lakhtakia, and V. Varadan, "Scattering by 3-dimensional anisotropic scatterers," IEEE Trans. Antennas Propag. 37, 800-802 (1989). [CrossRef]
  31. T. G. M. van der Ven, Colloidal Hydrodynamics (Academic, 1989).
  32. A. M. Stewart, "Angular momentum of the electromagnetic field: the plane wave paradox resolved," Eur. J. Phys. 26, 635-641 (2005). [CrossRef]
  33. R. A. Beth, "Mechanical detection and measurement of the angular momentum of light," Phys. Rev. 50, 115-125 (1936). [CrossRef]
  34. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, "Optical angular-momentum transfer to trapped absorbing particles," Phys. Rev. A 54, 1593-1596 (1996). [CrossRef] [PubMed]
  35. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348-350 (1998). [CrossRef]
  36. D. Benito, S. H. Simpson, and S. Hanna are preparing a paper to be called "FDTD calculations of forces and torques on ellipsoidal particles."
  37. S. M. Barnett, "Optical angular-momentum flux," J. Opt. B: Quantum Semiclassical Opt. 4, S7-S16 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited