OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 2 — Feb. 1, 2007
  • pp: 451–462

Comparison of geometric optics approximation and integral method for reflection and transmission from microgeometrical dielectric surfaces

Imed Sassi and M. Salah Sifaoui  »View Author Affiliations


JOSA A, Vol. 24, Issue 2, pp. 451-462 (2007)
http://dx.doi.org/10.1364/JOSAA.24.000451


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effects of incidence angle, geometrical shape, and optical properties of dielectric rough surfaces on reflectivity and transmissivity are discussed. Radiative properties for various surface geometries are calculated. Since the integral method is computationally expensive, a geometric optics approximation is developed. The regions of validity of the approximation compared with the integral method are quantified. Curves are presented that show these radiative properties versus the correlation length at incidence angle for a fixed rms deviation of the surface. The surface geometry, incidence angle, multiple scattering, shadowing effects, and dielectric permittivity contributions to the domains of validity of the approximation method are discussed for both TE and TM polarizations.

© 2007 Optical Society of America

OCIS Codes
(080.2740) Geometric optics : Geometric optical design
(120.5700) Instrumentation, measurement, and metrology : Reflection
(120.7000) Instrumentation, measurement, and metrology : Transmission
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization
(290.5880) Scattering : Scattering, rough surfaces

History
Original Manuscript: February 27, 2006
Revised Manuscript: July 14, 2006
Manuscript Accepted: July 20, 2006

Citation
Imed Sassi and M. Salah Sifaoui, "Comparison of geometric optics approximation and integral method for reflection and transmission from microgeometrical dielectric surfaces," J. Opt. Soc. Am. A 24, 451-462 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-2-451


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Tang and R. O. Buckius, "Regions of validity of the geometric optics approximation for angular scattering from very rough surfaces," Int. J. Heat Mass Transfer 40, 49-59 (1997). [CrossRef]
  2. K. Tang and R. O. Buckius, "The geometric optics approximation for reflection from two-dimensional random rough surfaces," Int. J. Heat Mass Transfer 41, 2037-2047 (1998). [CrossRef]
  3. J.-J. Greffet and R. Carminati, "Radiative transfer at nanometric scale: are the usual concepts still valid?" Heat Technol. 18, 81-85 (2000).
  4. A. Khenchaf, "Bistatic scattering and depolarization by randomly rough surfaces: application to the natural rough surfaces in X-band," Waves Random Media 11, 61-89 (2001). [CrossRef]
  5. J. J. Greffet, R. Carminati, K. Joulain, J. Ph. Mulet, S. Mainguy, and Y. Chen, "Coherent emission of light by thermal sources," Nature (London) 416, 61 (2002). [CrossRef]
  6. M. Nieto-Vesperinas and J. M. Soto-Crespo, "Light-diffracted intensities from very deep gratings," Phys. Rev. B 38, 7250-7259 (1988). [CrossRef]
  7. R. A. Dimenna and R. O. Buckius, "Microgeometrical contour contributions to surface scattering," Therm. Sci. Eng. 2, 166-171 (1994).
  8. Y. Yang and R. O. Buckius, "Surface length scale contributions to the directional and hemispherical emissivity and reflectivity," J. Thermophys. Heat Transfer 9, 653-659 (1995). [CrossRef]
  9. A. J. Sant, J. C. Dainty, and M. J. Kim, "Comparison of surface scattering between identical, randomly rough metal and dielectric diffusers," Opt. Lett. 14, 1183-1185 (1989). [CrossRef] [PubMed]
  10. D. W. Cohn, K. Tang, and R. O. Buckius, "Comparison of theory and experiments for reflection of micro contoured Surfaces," Int. J. Heat Mass Transfer 40, 133-149 (1983).
  11. R. M. Axline and A. K. Fung, "Numerical computation of scattering from perfectly conducting random surfaces," IEEE Trans. Antennas Propag. 26, 482-488 (1978). [CrossRef]
  12. H. L. Chan and A. K. Fung, "A numerical study of the Kirchhoff approximation in horizontally polarized backscattering from a random surface," Radio Sci. 13, 818-881 (1978). [CrossRef]
  13. A. K. Fung and M. K. Chen, "Numerical simulation of scattering from simple and composite random surfaces," J. Opt. Soc. Am. A 2, 2274-2284 (1985). [CrossRef]
  14. E. Thorsos, "The validity of the Kirchhoff approximation for rough surface scattering using Gaussian roughness spectrum," J. Acoust. Soc. Am. 83, 78-92 (1988). [CrossRef]
  15. M. F. Chen and A. K. Fung, "A numerical study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models," Radio Sci. 23, 163-170 (1988). [CrossRef]
  16. R. A. Dimenna and R. O. Buckius, "Quantifying specular approximations for angular scattering from perfectly conducting random rough surfaces," J. Thermophys. Heat Transfer 8, 393-399 (1994). [CrossRef]
  17. M. B. Matchiane, F. Ghmari, and M. S. Sifaoui, "Correction de l"approximation de Kirchhoff par la méthode intégrale reformulée: Cas des réflectivités de surfaces sinusoïdales," Can. J. Phys. 82, 303-321 (2004). [CrossRef]
  18. N. C. Bruce, "Scattering of light from surfaces with one-dimensional structure calculated by the ray-tracing method," J. Opt. Soc. Am. A 14, 1850-1858 (1997). [CrossRef]
  19. N. C. Bruce, "Calculations of the Mueller matrix for scattering of light from two-dimensional surfaces," Waves Random Media 8, 15-28 (1998). [CrossRef]
  20. J. A. Sanchez-Gil and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surfaces," J. Opt. Soc. Am. A 8, 1270-1286 (1991). [CrossRef]
  21. F. Ghmari, I. Sassi, and M. S. Sifaoui, "Directional hemispherical radiative properties of random dielectric rough surfaces," Waves Random Media 15, 469-486 (2005). [CrossRef]
  22. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Macmillan, 1963).
  23. P. Beckmann, "Scattering by non-Gaussian surfaces," IEEE Trans. Antennas Propag. 21, 169-175 (1973). [CrossRef]
  24. T. Michel, A. A. Maradudin, and E. R. Méndez, "Enhanced backscattering of light from non-Gaussian random metal surface," J. Opt. Soc. Am. B 6, 2438-2446 (1989). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980), Sec. I.5.
  26. R. D. Kodis, "A note on the theory of scattering from an irregular rough surface," IEEE Trans. Antennas Propag. AP-14, 77-82 (1966). [CrossRef]
  27. D. E. Barrick, "Rough surface scattering based on specular point theory," IEEE Trans. Antennas Propag. AP-16, 449-454 (1968). [CrossRef]
  28. K. L. Williams, J. S. Stroud, and P. L. Marston, "High-frequency forward scattering Gaussian spectrum, pressure release, corrugated surfaces: catastrophe modelling," J. Acoust. Soc. Am. 96, 1687-1702 (1994). [CrossRef]
  29. J. A. Stratton, Electromagnetic Theory, 1st ed. (McGraw-Hill, 1941), pp. 23-131.
  30. M. Q. Brewster, Thermal Radiative Transfer and Properties (Wiley, 1992), Chaps. 2 and 4.
  31. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Méndez, "Enhanced scattering of light from a random grating," Ann. Phys. (N.Y.) 203, 255-307 (1990). [CrossRef]
  32. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, 1991).
  33. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (MacMillan, 1963).
  34. J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces (Hilger, 1991).
  35. N. C. Bruce and J. C. Dainty, "Multiple scattering from random rough surfaces using the Kirchhoff approximation," J. Mod. Opt. 38, 597-590 (1991).
  36. N. C. Bruce and J. C. Dainty, "Multiple scattering from rough dielectric and metal surfaces using the Kirchhoff approximation," J. Mod. Opt. 38, 1471-1481 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited