OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 3 — Mar. 1, 2007
  • pp: 578–587

Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging

Raymond A. Applegate, William J. Donnelly, III, Jason D. Marsack, Darren E. Koenig, and Konrad Pesudovs  »View Author Affiliations


JOSA A, Vol. 24, Issue 3, pp. 578-587 (2007)
http://dx.doi.org/10.1364/JOSAA.24.000578


View Full Text Article

Enhanced HTML    Acrobat PDF (922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report root-mean-square (RMS) wavefront error (WFE) for individual aberrations and cumulative high-order (HO) RMS WFE for the normal human eye as a function of age by decade and pupil diameter in 1 mm steps from 3 to 7 mm and determine the relationship among HO RMS WFE, mean age for each decade of life, and luminance for physiologic pupil diameters. Subjects included 146 healthy individuals from 20 to 80   years of age. Ocular aberration was measured on the preferred eye of each subject (for a total of 146 eyes through dilated pupils; computed for 3, 4, 5, 6, and 7 mm pupils; and described with a tenth-radial-order normalized Zernike expansion. We found that HO RMS WFE increases faster with increasing pupil diameter for any given age and pupil diameter than it does with increasing age alone. A planar function accounts for 99% of the variance in the 3-D space defined by mean log HO RMS WFE, mean age for each decade of life, and pupil diameter. When physiologic pupil diameters are used to estimate HO RMS WFE as a function of luminance and age, at low luminance ( 9 cd m 2 ) HO RMS WFE decreases with increasing age. This normative data set details (1) the 3-D relationship between HO RMS WFE and age for fixed pupil diameters and (2) the 3-D relationship among HO RMS WFE, age, and luminance for physiologic pupil diameters.

© 2007 Optical Society of America

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: May 18, 2006
Revised Manuscript: September 5, 2006
Manuscript Accepted: September 6, 2006
Published: February 14, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Raymond A. Applegate, William J. Donnelly, III, Jason D. Marsack, Darren E. Koenig, and Konrad Pesudovs, "Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging," J. Opt. Soc. Am. A 24, 578-587 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-3-578


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Guirao, C. Gonzalez, M. Redondo, E. Geraghty, S. Norrby, and P. Artal, "Average optical performance of the human eye as a function of age in a normal population," Invest. Ophthalmol. Visual Sci. 40, 203-213 (1999).
  2. J. S. McLellan, S. Marcos, and S. A. Burns, "Age-related changes in monochromatic wave aberrations of the human eye," Invest. Ophthalmol. Visual Sci. 42, 1390-1395 (2001).
  3. A. Guirao, M. Redondo, and P. Artal, "Optical aberrations of the human cornea as a function of age," J. Opt. Soc. Am. A 17, 1697-1702 (2000). [CrossRef]
  4. P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002). [CrossRef]
  5. R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999). [CrossRef]
  6. P. Artal, M. Ferro, I. Miranda, and R. Navarro, "Effects of aging in retinal image quality," J. Opt. Soc. Am. A 10, 1656-1662 (1993). [CrossRef] [PubMed]
  7. H. S. Ginis, S. Plainis, and A. Pallikaris, "Variability of wavefront aberration measurements in small pupil sizes using a clinical Shack-Hartmann aberrometer," BMC Ophthalmol 4, 1 (2004). [CrossRef] [PubMed]
  8. T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004). [CrossRef] [PubMed]
  9. W. N. Charman, "Wavefront aberration of the eye: a review," Optom. Vision Sci. 68, 574-583 (1991). [CrossRef]
  10. D. Whitaker and D. B. Elliott, "Simulating age-related optical changes in the human eye," Doc. Ophthalmol. 82, 307-316 (1992). [CrossRef] [PubMed]
  11. F. W. Campbell and D. G. Green, "Optical and retinal factors affecting visual resolution," J. Physiol. (London) 181, 576-593 (1965).
  12. P. Artal and R. Navarro, "Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression," J. Opt. Soc. Am. A 11, 246-249 (1994). [CrossRef]
  13. K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004). [CrossRef] [PubMed]
  14. C. E. Martinez, R. A. Applegate, S. D. Klyce, M. B. McDonald, J. P. Medina, and H. C. Howland, "Effect of pupillary dilation on corneal optical aberrations after photorefractive keratectomy," Arch. Ophthalmol. (Chicago) 116, 1053-1062 (1998).
  15. Y. Wang, K. Zhao, Y. Jin, Y. Niu, and T. Zuo, "Changes of higher order aberration with various pupil sizes in the myopic eye," J. Refract. Surg. 19, S270-S274 (2003). [PubMed]
  16. W. N. Charman, J. A. Jennings, and H. Whitefoot, "The refraction of the eye in the relation to spherical aberration and pupil size," Br. J. Physiol. Opt. 32, 78-93 (1978). [PubMed]
  17. L. T. Chylack Jr., J. K. Wolfe, D. M. Singer, M. C. Leske, M. A. Bullimore, I. L. Bailey, J. Friend, D. McCarthy, and S. Y. Wu, "The Lens Opacities Classification System III. The longitudinal study of cataract study group," Arch. Ophthalmol. (Chicago) 111, 831-836 (1993).
  18. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997). [CrossRef]
  19. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  20. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  21. T. O. Salmon, L. N. Thibos, and A. Bradley, "Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor," J. Opt. Soc. Am. A 15, 2457-2465 (1998). [CrossRef]
  22. J. Schwiegerling, "Scaling Zernike expansion coefficients to different pupil sizes," J. Opt. Soc. Am. A 19, 1937-1945 (2002). [CrossRef]
  23. C. E. Campbell, "Matrix method to find a new set of Zernike coefficients from an original set when the aperture radius is changed," J. Opt. Soc. Am. A 20, 209-217 (2003). [CrossRef]
  24. B. Winn, D. Whitaker, D. B. Elliott, and N. J. Phillips, "Factors affecting light-adapted pupil size in normal human subjects," Invest. Ophthalmol. Visual Sci. 35, 1132-1137 (1994).
  25. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  26. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  27. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006). [CrossRef] [PubMed]
  28. P. Artal, A. Benito, and J. Tabernero, "The human eye is an example of robust optical design," J. Vision 6, 1-7 (2006). [CrossRef]
  29. R. A. Applegate, J. D. Marsack, R. Ramos, and E. J. Sarver, "Interaction between aberrations to improve or reduce visual performance," J. Cataract Refractive Surg. 29, 1487-1495 (2003). [CrossRef]
  30. J. D. Marsack, L. N. Thibos, and R. A. Applegate, "Metrics of optical quality derived from wave aberrations predict visual performance," J. Vision 4, 322-328 (2004). [CrossRef]
  31. S. Marcos, "Are changes in ocular aberrations with age a significant problem for refractive surgery?" J. Refract. Surg. 18, S572-S578 (2002). [PubMed]
  32. H. Cheng, J. K. Barnett, A. S. Vilupuru, J. D. Marsack, S. Kasthurirangan, R. A. Applegate, and A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 4, 272-280 (2004). [CrossRef]
  33. H. C. Howland and B. Howland, "A subjective method for the measurement of monochromatic aberrations of the eye," J. Opt. Soc. Am. 67, 1508-1518 (1977). [CrossRef] [PubMed]
  34. B. Howland and H. C. Howland, "Subjective measurement of high-order aberrations of the eye," Science 193, 580-582 (1976). [CrossRef] [PubMed]
  35. M. Camellin, F. Gambino, and S. Casaro, "Measurement of the spatial shift of the pupil center," J. Cataract Refractive Surg. 31, 1719-1721 (2005). [CrossRef]
  36. Y. Yang, K. Thompson, and S. A. Burns, "Pupil location under mesopic, photopic, and pharmacologically dilated conditions," Invest. Ophthalmol. Visual Sci. 43, 2508-2512 (2002).
  37. I. E. Loewenfeld, The Pupil: Anatomy, Physiology, and Clinical Applications, (Butterworth/Heinemann, 1999), p. 500, figure 10-26.
  38. R. A. Applegate, J. D. Marsack, and L. N. Thibos, "Metrics of retinal image quality predict visual performance in eyes with 20/17 or better visual acuity," Optom. Vision Sci. 83, 635-640 (2006). [CrossRef]
  39. K. Pesudovs, J. D. Marsack, W. J. Donnelly III, L. N. Thibos, and R. A. Applegate, "Measuring visual acuity--mesopic or photopic conditions, and high or low contrast letters?" J. Refract. Surg. 20, S508-S514 (2004). [PubMed]
  40. G. Haegerstrom-Portnoy, M. E. Schneck, L. A. Lott, and J. A. Brabyn, "The relation between visual acuity and other spatial vision measures," Optom. Vision Sci. 77, 653-662 (2000). [CrossRef]
  41. G. Haegerstrom-Portnoy, M. E. Schneck, and J. A. Brabyn, "Seeing into old age: vision function beyond acuity," Optom. Vision Sci. 76, 141-158 (1999). [CrossRef]
  42. G. Haegerstrom-Portnoy, J. Brabyn, M. E. Schneck, and A. Jampolsky, "The SKILL Card. An acuity test of reduced luminance and contrast. Smith-Kettlewell Institute Low Luminance," Invest. Ophthalmol. Visual Sci. 38, 207-218 (1997).
  43. M. E. Sloane, C. Owsley, and C. A. Jackson, "Aging and luminance-adaptation effects on spatial contrast sensitivity," J. Opt. Soc. Am. A 5, 2181-2190 (1988). [CrossRef] [PubMed]
  44. D. Elliott, D. Whitaker, and D. MacVeigh, "Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes," Vision Res. 30, 541-547 (1990). [CrossRef] [PubMed]
  45. S. Pardhan, "Contrast sensitivity loss with aging: sampling efficiency and equivalent noise at different spatial frequencies," J. Opt. Soc. Am. A 21, 169-175 (2004). [CrossRef]
  46. T. J. van den Berg, "Analysis of intraocular straylight, especially in relation to age," Optom. Vision Sci. 72, 52-59 (1995). [CrossRef]
  47. W. J. Donnelly III, K. Pesudovs, J. D. Marsack, E. J. Sarver, and R. A. Applegate, "Quantifying scatter in Shack-Hartmann images to evaluate nuclear cataract," J. Refract. Surg. 20, S515-S521 (2004). [PubMed]
  48. J. L. Alio, P. Schimchak, H. P. Negri, and R. Montes-Mico, "Crystalline lens optical dysfunction through aging," Ophthalmology 112, 2022-2029 (2005). [CrossRef] [PubMed]
  49. K. Sagawa and Y. Takahashi, "Spectral luminous efficiency as a function of age," J. Opt. Soc. Am. A 18, 2659-2667 (2001). [CrossRef]
  50. L. D. Robman, C. A. McCarty, S. K. Garrett, H. Stephenson, A. P. Thomas, J. J. McNeil, and H. R. Taylor, "Comparison of clinical and digital assessment of nuclear optical density," Ophthalmic Res. 31, 119-126 (1999). [CrossRef] [PubMed]
  51. B. R. Hammond, Jr., B. R. Wooten, and D. M. Snodderly, "Density of the human crystalline lens is related to the macular pigment carotenoids, lutein and zeaxanthin," Optom. Vision Sci. 74, 499-504 (1997). [CrossRef]
  52. J. Xu, J. Pokorny, and V. C. Smith, "Optical density of the human lens," J. Opt. Soc. Am. A 14, 953-960 (1997). [CrossRef]
  53. J. S. Werner, S. K. Donnelly, and R. Kliegl, "Aging and human macular pigment density. Appended with translations from the work of Max Schultze and Ewald Hering," Vision Res. 27, 257-268 (1987). [CrossRef] [PubMed]
  54. J. Schwiegerling, "Blue-light-absorbing lenses and their effect on scotopic vision," J. Cataract Refractive Surg. 32, 141-144 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited