OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 5 — May. 1, 2007
  • pp: 1296–1304

Effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging

Justin M. Wanek, Marek Mori, and Mahnaz Shahidi  »View Author Affiliations


JOSA A, Vol. 24, Issue 5, pp. 1296-1304 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001296


View Full Text Article

Enhanced HTML    Acrobat PDF (370 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of increased high-order wavefront aberrations on image resolution was investigated, and the performance of adaptive optics (AO) for correcting wavefront error in the presence of increased light scatter was assessed in a model eye. An AO section imaging system provided an oblique view of a model retina and incorporated a wavefront sensor and deformable mirror for measurement and compensation of wavefront aberrations. Image resolution was quantified by the width of a Lorentzian curve fitted to a laser line image. Wavefront aberrations were significantly reduced with AO, resulting in improvement of image resolution. In the model eye, image resolution was degraded with increased high-order wavefront aberrations (horizontal coma and spherical) and improved with AO correction of wavefront error in the presence of increased light scatter. The findings of the current study suggest that AO imaging systems can potentially improve image resolution in aging eyes with increased aberrations and scatter.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(170.0110) Medical optics and biotechnology : Imaging systems
(290.5850) Scattering : Scattering, particles
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Instrumentation and Techniques for Retinal Imaging

History
Original Manuscript: June 30, 2006
Revised Manuscript: November 16, 2006
Manuscript Accepted: November 27, 2006
Published: April 11, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Justin M. Wanek, Marek Mori, and Mahnaz Shahidi, "Effect of aberrations and scatter on image resolution assessed by adaptive optics retinal section imaging," J. Opt. Soc. Am. A 24, 1296-1304 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-5-1296


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Artal, E. Berrio, A. Guirao, and P. Piers, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002). [CrossRef]
  2. R. I. Calver, M. J. Cox, and D. B. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999). [CrossRef]
  3. G. Smith, M. J. Cox, R. Calver, and L. F. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001). [CrossRef] [PubMed]
  4. T. Fujikado, T. Kuroda, S. Ninomiya, N. Maeda, Y. Tano, T. Oshika, Y. Hirohara, and T. Mihashi, "Age-related changes in ocular and corneal aberrations," Am. J. Ophthalmol. 138, 143-146 (2004). [CrossRef] [PubMed]
  5. T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, and T. Mihashi, "Wavefront analysis in eyes with nuclear or cortical cataract," Am. J. Ophthalmol. 134, 1-9 (2002). [CrossRef] [PubMed]
  6. F. Diaz-Douton, A. Benito, J. Pujol, M. Ariona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006). [CrossRef]
  7. J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, "The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation," Vision Res. 30, 699-707 (1990). [CrossRef] [PubMed]
  8. T. J. van den Berg, "Analysis of intraocular straylight, especially in relation to age," Optom. Vision Sci. 72, 52-59 (1995). [CrossRef]
  9. T. J. van den Berg and J. K. Ijspeert, "Clinical assessment of intraocular straylight," Appl. Opt. 31, 3694-3696 (1992). [CrossRef] [PubMed]
  10. A. S. Rajagopalan, M. Shahidi, K. R. Alexander, G. A. Fishman, and R. Zelkha, "Higher-order wavefront aberrations in retinitis pigmentosa," Optom. Vision Sci. 82, 623-628 (2005). [CrossRef]
  11. M. Shahidi, Y. Yang, A. S. Rajagopalan, K. R. Alexander, G. A. Fishman, and R. Zelkha, "A method for differentiating higher order aberrations and light scatter applied to retinitis pigmentosa," Optom. Vision Sci. 82, 976-980 (2005). [CrossRef]
  12. M. Shahidi, N. P. Blair, M. Mori, and R. Zelkha, "Optical section retinal imaging and wavefront sensing in diabetes," Optom. Vision Sci. 81, 778-784 (2004). [CrossRef]
  13. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  14. C. Jiang, W. Wang, N. Ling, G. Xu, X. Rao, X. Li, and Y. Zhang, "High-resolution imaging of living retina through optic adaptive retinal imaging system," Yan Ke Xue Bao 18, 131-135 (2002).
  15. P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, and D. R. Williams, "Adaptive optics for vision: the eye's adaptation to point spread function," J. Refract. Surg. 19, S585-587 (2003). [PubMed]
  16. D. T. Miller, D. R. Williams, G. M. Morris, and J. Liang, "Images of cone photoreceptors in the living human eye," Vision Res. 36, 1067-1079 (1996). [CrossRef] [PubMed]
  17. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, "Functional consequences of the relative numbers of L and M cones," J. Opt. Soc. Am. A 17, 607-614 (2000). [CrossRef]
  18. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, "Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness," Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004). [CrossRef] [PubMed]
  19. A. Pallikaris, D. R. Williams, and H. Hofer, "The reflectance of single cones in the living human eye," Invest. Ophthalmol. Visual Sci. 44, 4580-4592 (2003). [CrossRef]
  20. A. Roorda and D. R. Williams, "The arrangement of the three cone classes in the living human eye," Nature 397, 520-522 (1999). [CrossRef] [PubMed]
  21. A. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vision 2, 404-412 (2002). [CrossRef]
  22. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, "High-resolution retinal imaging of cone-rod dystrophy," Ophthalmology 113, 1014-1019 (2006). [CrossRef]
  23. J. A. Martin and A. Roorda, "Direct and noninvasive assessment of parafoveal capillary leukocyte velocity," Ophthalmology 112, 2219-2224 (2005). [CrossRef]
  24. F. Romero-Borja, K. Venkateswaran, A. Roorda, and T. Hebert, "Optical slicing of human retinal tissue in vivo with the adaptive optics scanning laser ophthalmoscope," Appl. Opt. 44, 4032-4040 (2005). [CrossRef]
  25. A. Roorda, F. Romero-Borja, and W. J. Donnelly, III, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002).
  26. Y. Zhang, S. Poonja, and A. Roorda, "MEMS-based adaptive optics scanning laser ophthalmoscope," Opt. Lett. 31, 1268-1270 (2006). [CrossRef]
  27. D. Huang and M. Arif, "Spot size and quality of scanning laser correction of higher-order wavefront aberrations," J. Cataract Refractive Surg. 28, 407-416 (2002). [CrossRef]
  28. K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004). [CrossRef] [PubMed]
  29. B. Hermann, E. J. Fernandez, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004). [CrossRef] [PubMed]
  30. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography," Opt. Lett. 29, 480-482 (2004). [CrossRef] [PubMed]
  31. M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, T. Ko, J. S. Schuman, A. Kowalczyk, and J. S. Duker, "Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography," Ophthalmology 112, 1734-1746 (2005). [CrossRef] [PubMed]
  32. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006). [CrossRef] [PubMed]
  33. M. Shahidi, M. Mori, and R. Zelkha, "A method for three-dimensional imaging of the retina in human eyes," Ophthalmic Surg. Lasers Imaging 38, 35-42 (2007).
  34. J. Kiryu, Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Enhanced visualization of vitreoretinal interface by laser biomicroscopy," Ophthalmology 100, 1040-1043 (1993). [PubMed]
  35. Y. Ogura, M. Shahidi, M. T. Mori, N. P. Blair, and R. Zeimer, "Improved visualization of macular hole lesions with laser biomicroscopy," Arch. Ophthalmol. (Chicago) 109, 957-961 (1991).
  36. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  37. R. C. Zeimer and M. T. Mori, "An interactive model eye for use with ophthalmic instruments," Arch. Ophthalmol. (Chicago) 106, 126-127 (1988).
  38. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," J. Refract. Surg. 18, S652-660 (2002). [PubMed]
  39. M. C. Campbell, E. M. Harrison, and P. Simonet, "Psychophysical measurement of the blur on the retina due to optical aberrations of the eye," Vision Res. 30, 1587-1602 (1990). [CrossRef] [PubMed]
  40. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, and P. Artal, "Ocular wave-front aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002). [CrossRef] [PubMed]
  41. J. Porter, A. Guirao, I. G. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001). [CrossRef]
  42. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, "Statistical variation of aberration structure and image quality in a normal population of healthy eyes," J. Opt. Soc. Am. A 19, 2329-2348 (2002). [CrossRef]
  43. F. C. Delori and S. A. Burns, "Fundus reflectance and the measurement of crystalline lens density," J. Opt. Soc. Am. A 13, 215-226 (1996). [CrossRef]
  44. R. A. Weale, "Age and the transmittance of the human crystalline lens," J. Physiol. (London) 395, 577-587 (1988).
  45. L. Chen, B. Singer, A. Guirao, J. Porter, and D. R. Williams, "Image metrics for predicting subjective image quality," Optom. Vision Sci. 82, 358-369 (2005). [CrossRef]
  46. M. J. Cox, D. A. Atchison, and D. H. Scott, "Scatter and its implications for the measurement of optical image quality in human eyes," Optom. Vision Sci. 80, 58-68 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited