OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 5 — May. 1, 2007
  • pp: 1402–1410

Gaze-contingent display for retinal function testing by scanning laser ophthalmoscope

Manfred MacKeben and Alexander Gofen  »View Author Affiliations

JOSA A, Vol. 24, Issue 5, pp. 1402-1410 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To overcome the inconvenience and imprecision of conventional software performing microperimetry with the scanning laser ophthalmoscope (SLO) in clinical settings, we developed a “smart microperimetry” program. It takes advantage of modern computer technology, especially processing speed and high rate of data transfer. It allows continuous on-line processing of the image of the retina and instantaneous correction of stimulus placement according to involuntary eye movements. Thus, the program provides gaze-contingent display of the stimulus and senses the conditions for image tracking so that stimulation during large eye movements, blinks, and temporarily flawed image quality can be prevented. These features have greatly increased the efficiency and precision of SLO data in comparison with those obtained by older programs.

© 2007 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.3790) Vision, color, and visual optics : Low vision

ToC Category:
Functional Imaging of the Retina

Original Manuscript: August 18, 2006
Revised Manuscript: December 15, 2006
Manuscript Accepted: December 18, 2006
Published: April 11, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

Manfred MacKeben and Alexander Gofen, "Gaze-contingent display for retinal function testing by scanning laser ophthalmoscope," J. Opt. Soc. Am. A 24, 1402-1410 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Webb, G. W. Hughes, and O. Pomerantzeff, "Flying spot TV ophthalmoscope," Appl. Opt. 19, 2991-2997 (1980). [CrossRef] [PubMed]
  2. M. A. Mainster, G. T. Timberlake, R. H. Webb, and G. W. Hughes, "Scanning laser ophthalmoscopy: clinical applications," Ophthalmology 89, 852-857 (1982). [PubMed]
  3. K. Venkateswaran, A. Roorda, and F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004). [CrossRef] [PubMed]
  4. N. M. Putnam, H. J. Hofer, N. Doble, L. Chen, J. Carroll, and D. R. Williams, "The locus of fixation and the foveal cone mosaic," J. Vision 5, 632-639 (2005). [CrossRef]
  5. J. Nachmias, "Two-dimensional motion of the retinal image during monocular fixation," J. Opt. Soc. Am. 49, 901-908 (1959). [CrossRef] [PubMed]
  6. P. Isokoski and R. Raisamo, "Speed-accuracy measures in a population of six mice," in Proceedings of APCHI2002 (5th Asia Pacific Conference on Computer Human Interaction) (Science Press, Beijing, 2002), pp. 765-777.
  7. E. Peli, R. A. Augliere, and G. Timberlake, "Feature-based registration of retinal images," IEEE Trans. Med. Imaging MI-6, 272-278 (1987). [CrossRef]
  8. T. Kube, S. Schmidt, F. Toonen, B. Kirchhof, and S. Wolf, "Fixation stability and macular light sensitivity in patients with diabetic maculopathy: a microperimetric study with a scanning laser ophthalmoscope," Ophthalmologica 219, 16-20 (2005). [CrossRef]
  9. Z. Xu, R. Schuchard, D. Ross, and P. Benkeser, "Tracking retinal motion with a scanning laser ophthalmoscope," J. Rehabil. Res. Dev. 42, 373-380 (2005). [CrossRef]
  10. N. H. Solouma, A. B. Youssef, Y. A. Badr, and Y. M. Kadah, "A new real-time retinal tracking system for image-guided laser treatment," IEEE Trans. Biomed. Eng. 49, 1059-1067 (2002). [CrossRef]
  11. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, and R. H. Webb, "Compact scanning laser ophthalmoscope with high-speed retinal tracker," Appl. Opt. 1, 4621-4632 (2003). [CrossRef]
  12. J. Reinhard, W. Inhoffen, and S. Trauzettel-Klosinski, "A new SLO microperimetry using gaze-contingent stimulus placement," Invest. Ophthalmol. Visual Sci. 45, 2993 (2004).
  13. Matrox Imaging, ActiveMIL Version 8 User Guide (no. 10781-301-0800) (Matrox Electronic Systems, 2005), Chap. 7, pp. 191-220.
  14. G. T. Timberlake, M. K. Sharma, D. V. Gobert, and J. H. Maino, "Distortion and size calibration of the scanning laser ophthalmoscope (SLO) laser-beam raster," Optom. Vision Sci. 80, 772-777 (2003). [CrossRef]
  15. A. T. Bahill, A. Brockenbrough, and B. T. Troost, "Variability and development of a normative data base for saccadic eye movements," Invest. Ophthalmol. Visual Sci. 21, 117-127 (1981).
  16. L. Culham, F. W. Fitzke, G. T. Timberlake, and J. Marshall, "Assessment of fixation stability in normal subjects and patients using a scanning laser ophthalmoscope," Clin. Vision Sci. 8, 551-561 (1993).
  17. C. Bellmann, C. M. Feely, M. D. Crossland, S. A. Kabanarou, and G. S. Rubin, "Fixation stability using central and pericentral fixation targets in patients with age-related macular degeneration," Ophthalmology 111, 2265-2270 (2004). [CrossRef] [PubMed]
  18. J. Reinhard, A. Messias, K. Dietz, M. MacKeben, R. Lakmann, H. P. Scholl, E. Apfelstedt-Sylla, B. H. Weber, M. Seeliger, E. Zrenner, and S. Trauzettel-Klosinski, "Quantifying fixation in patients with Stargardt's macular dystrophy," submitted to Invest. Ophthalmol. Visual Sci.
  19. T. Warabi, M. Kase, and T. Kato, "Effect of aging on the accuracy of visually guided saccadic eye movement," Ann. Neurol. 16, 449-454 (1984). [CrossRef] [PubMed]
  20. L. A. Abel, B. T. Troost, and L. F. Dell'Osso, "The effects of age on normal saccadic characteristics and their variability," Vision Res. 23, 33-37 (1983). [CrossRef] [PubMed]
  21. G. Von Noorden and G. Mackensen, "Phenomenology of eccentric fixation," Am. J. Ophthalmol. 53, 642-659 (1962). [PubMed]
  22. D. C. Fletcher and R. A. Schuchard, "Preferred retinal loci. Relationship to macular scotomas in a low vision population," Ophthalmology 104, 632-638 (1997). [PubMed]
  23. H. Lei and R. A. Schuchard, "Using two preferred retinal loci for different lighting conditions in patients with central scotomas," Invest. Ophthalmol. Visual Sci. 38, 1812-1818 (1997).
  24. M. D. Crossland, L. E. Culham, S. A. Kabanarou, and G. S. Rubin, "Preferred retinal locus development in patients with macular disease," Ophthalmology 112, 1579-1585 (2005). [CrossRef] [PubMed]
  25. M. D. Crossland, M. Sims, R. F. Galbraith, and G. S. Rubin, "Evaluation of a new quantitative technique to assess the number and extent of preferred retinal loci in macular disease," Vision Res. 44, 1537-1546 (2004). [CrossRef] [PubMed]
  26. F. Møller, M. L. Laursen, and A. K. Sjolie, "Fixation topography in normal test persons," Graefe's Arch. Clin. Exp. Ophthalmol. 244, 577-582 (2005). [CrossRef]
  27. H. Strasburger and I. Rentschler, "Contrast-dependent dissociation of visual recognition and detection fields," Eur. J. Neurosci. 8, 1787-1791 (1996). [CrossRef] [PubMed]
  28. M. MacKeben, A. Colenbrander, and A. Gofen, Use Your PC to Quickly Map Remaining Vision After Foveal Vision Loss. Perimetry Update 1998/1999, M.Wall and J.M.Wild, eds. (Kugler, 1999), pp. 307-316.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited