OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 6 — Jun. 1, 2007
  • pp: 1617–1622

Reduction of speckle in digital holography by discrete Fourier filtering

Jonathan Maycock, Bryan M. Hennelly, John B. McDonald, Yann Frauel, Albertina Castro, Bahram Javidi, and Thomas J. Naughton  »View Author Affiliations


JOSA A, Vol. 24, Issue 6, pp. 1617-1622 (2007)
http://dx.doi.org/10.1364/JOSAA.24.001617


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a digital signal processing technique that reduces the speckle content in reconstructed digital holograms. The method is based on sequential sampling of the discrete Fourier transform of the reconstructed image field. Speckle reduction is achieved at the expense of a reduced intensity and resolution, but this trade-off is shown to be greatly superior to that imposed by the traditional mean and median filtering techniques. In particular, we show that the speckle can be reduced by half with no loss of resolution (according to standard definitions of both metrics).

© 2007 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(030.6140) Coherence and statistical optics : Speckle
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(090.2880) Holography : Holographic interferometry
(100.2000) Image processing : Digital image processing

ToC Category:
Image Processing

History
Original Manuscript: September 21, 2006
Manuscript Accepted: December 8, 2006
Published: May 9, 2007

Citation
Jonathan Maycock, Bryan M. Hennelly, John B. McDonald, Yann Frauel, Albertina Castro, Bahram Javidi, and Thomas J. Naughton, "Reduction of speckle in digital holography by discrete Fourier filtering," J. Opt. Soc. Am. A 24, 1617-1622 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-6-1617


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Dainty, Laser Speckle and Related Phenomena, 2nd ed. (Springer-Verlag, 1984).
  2. P. K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).
  3. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, 2005).
  4. J. W. Goodman, Speckle Phenomena: Theory and Applications (Roberts & Company, 2006).
  5. R. F. Patten, B. M. Hennelly, D. P. Kelly, F. T. O'Neill, Y. Liu, and J. T. Sheridan, "Speckle photography: Mixed domain fractional Fourier motion detection," Opt. Lett. 31, 32-34 (2006). [CrossRef] [PubMed]
  6. J. Garcia-Sucerquia, J. H. Ramírez, and R. Castaneda, "Incoherent recovering of the spatial resolution in digital holography," Opt. Commun. 260, 62-67 (2006). [CrossRef]
  7. D. Kim, "Reduction of coherent artifacts in dynamic holographic three-dimensional displays by diffraction-specific pseudorandom diffusion," Opt. Lett. 29, 611-613 (2004). [CrossRef] [PubMed]
  8. N. Bertaux, Y. Frauel, P. Réfrégier, and B. Javidi, "Speckle removal using a maximum-likelihood technique with isoline gray-level regularization," J. Opt. Soc. Am. A 21, 2283-2291 (2004). [CrossRef]
  9. J. C. Dainty and W. T. Welford, "Reduction of speckle in image plane hologram reconstruction by use of a moving pupil," Opt. Commun. 3, 289-294 (1971). [CrossRef]
  10. P. Hariharan and Z. S. Hegedus, "Reduction of speckle in coherent imaging by spatial frequency sampling," Opt. Acta 21, 345-356 (1974). [CrossRef]
  11. T. J. Naughton, Y. Frauel, B. Javidi, and E. Tajahuerce, "Compression of digital holograms for three-dimensional object reconstruction and recognition," Appl. Opt. 41, 4124-4132 (2002). [CrossRef] [PubMed]
  12. J. Maycock, C. M. Elhinney, B. M. Hennelly, T. J. Naughton, J. McDonald, and B. Javidi, "Three-dimensional scene reconstruction of partially occluded objects using digital holograms," Appl. Opt. 45, 2975-2985 (2006). [CrossRef] [PubMed]
  13. A. Shortt, T. J. Naughton, and B. Javidi, "Compression of digital holograms of three-dimensional objects using wavelets," Opt. Express 14, 2625-2630 (2006). [CrossRef] [PubMed]
  14. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997). [CrossRef] [PubMed]
  15. S. Lowenthal and H. Arsenault, "Image formation for coherent diffuse objects: Statistical properties," J. Opt. Soc. Am. 60, 1478-1483 (1970). [CrossRef]
  16. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw Hill, 1965).
  17. I. S. Reed, "On a moment theorem for complex Gaussian processes," IRE Trans. Inf. Theory 8, 194-195 (1962). [CrossRef]
  18. B. M. Hennelly and J. T. Sheridan, "Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms," J. Opt. Soc. Am. A 22, 917-927 (2005). [CrossRef]
  19. L. S. Lim, "Techniques for speckle noise removal," Opt. Eng. (Bellingham) 20, 670-678 (1981).
  20. T. J. Crimmins, "Geometric filter for speckle reduction," Appl. Opt. 24, 1438-1443 (1985). [CrossRef] [PubMed]
  21. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, "Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram," Appl. Opt. 41, 6187-6192 (2002). [CrossRef] [PubMed]
  22. T. J. Naughton and B. Javidi, "Compression of encrypted three-dimensional objects using digital holography," Opt. Eng. (Bellingham) 43, 2233-2238 (2004). [CrossRef]
  23. B. Javidi, P. Ferraro, S.-H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, "Three-dimensional image fusion by use of multiwavelength digital holography," Opt. Lett. 30, 144-146 (2005). [CrossRef] [PubMed]
  24. I. Yamaguchi, K. Yamamoto, G. A. Mills, and M. Yokota, "Image reconstruction only by phase in phase-shifting digital holography," Appl. Opt. 45, 975-983 (2006). [CrossRef] [PubMed]
  25. A. E. Shortt, T. J. Naughton, and B. Javidi, "A companding approach for nonuniform quantization of digital holograms of three-dimensional objects," Opt. Express 14, 5129-5134 (2006). [CrossRef] [PubMed]
  26. E. Darakis and J. J. Soraghan, "Compression of interference patterns with application to phase-shifting digital holography," Appl. Opt. 45, 2437-2443 (2006). [CrossRef] [PubMed]
  27. E. Darakis and J. J. Soraghan, "Use of Fresnelets for phase-shifting digital hologram compression," IEEE Trans. Image Process. 15, 3804-3811 (2006). [CrossRef] [PubMed]
  28. F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Hegera, E., A. D. Mitchell, P. Marquet, and B. Rappaz, "Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba," Opt. Express 14, 7005-7013 (2006). [CrossRef] [PubMed]
  29. Y. Frauel, E. Tajahuerce, M.-A. Castro, and B. Javidi, "Distortion-tolerant three-dimensional object recognition with digital holography," Appl. Opt. 40, 3887-3893 (2001). [CrossRef]
  30. I. T. Nomura, A. Okazaki, M. Kameda, Y. Morimoto, and B. Javidi, "Image reconstruction from compressed encrypted digital hologram," Opt. Eng. (Bellingham) 44, 075801 (2005). [CrossRef]
  31. T. J. Naughton, J. B. McDonald, and B. Javidi, "Efficient compression of Fresnel fields for Internet transmission of three-dimensional images," Appl. Opt. 42, 4758-4764 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited