OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 2443–2456

Morphology of the nonspherically decaying radiation beam generated by a rotating superluminal source

Houshang Ardavan, Arzhang Ardavan, John Singleton, Joseph Fasel, and Andrea Schmidt  »View Author Affiliations


JOSA A, Vol. 24, Issue 8, pp. 2443-2456 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002443


View Full Text Article

Enhanced HTML    Acrobat PDF (499 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the nonspherically decaying radiation field that is generated by a polarization current with a superluminally rotating distribution pattern in vacuum, a field that decays with the distance R P from its source as R P 1 2 , instead of R P 1 . It is shown (i) that the nonspherical decay of this emission remains in force at all distances from its source independently of the frequency of the radiation, (ii) that the part of the source that makes the main contribution toward the value of the nonspherically decaying field has a filamentary structure whose radial and azimuthal widths become narrower (as R P 2 and R P 3 , respectively) the farther the observer is from the source, (iii) that the loci on which the waves emanating from this filament interfere constructively delineate a radiation subbeam that is nondiffracting in the polar direction, (iv) that the cross-sectional area of each nondiffracting subbeam increases as R P , instead of R P 2 , so that the requirements of conservation of energy are met by the nonspherically decaying radiation automatically, and (v) that the overall radiation beam within which the field decays nonspherically consists, in general, of the incoherent superposition of such coherent nondiffracting subbeams. These findings are related to the recent construction and use of superluminal sources in the laboratory and numerical models of the emission from them. We also briefly discuss the relevance of these results to the giant pulses received from pulsars.

© 2007 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(040.3060) Detectors : Infrared
(230.6080) Optical devices : Sources
(250.5530) Optoelectronics : Pulse propagation and temporal solitons
(260.2110) Physical optics : Electromagnetic optics
(350.1270) Other areas of optics : Astronomy and astrophysics

ToC Category:
Optical Devices

History
Original Manuscript: August 11, 2006
Revised Manuscript: January 28, 2007
Manuscript Accepted: March 20, 2007
Published: July 11, 2007

Citation
Houshang Ardavan, Arzhang Ardavan, John Singleton, Joseph Fasel, and Andrea Schmidt, "Morphology of the nonspherically decaying radiation beam generated by a rotating superluminal source," J. Opt. Soc. Am. A 24, 2443-2456 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-8-2443

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited