OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 2457–2463

Experimental demonstration of photonic bandgaps in azopolymer resonant waveguide grating systems

R. J. Stockermans and P. Rochon  »View Author Affiliations

JOSA A, Vol. 24, Issue 8, pp. 2457-2463 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (763 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Photonic bandgaps are demonstrated in one-dimensional corrugated waveguides in the infrared range. A coupling grating is superimposed with single and double Bragg gratings on an azopolymer film by a simple optical process, which allows easy control of the grating spacing. Light is coupled to the TE 0 resonant mode, and gaps in the dispersion curve are introduced by careful selection of the gratings. The analysis is carried out by measuring the transmission through the waveguide as a function of the wavelength and angle of incidence of a probe beam. This results in a direct measurement of the dispersion curves, which are in excellent agreement with theory.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.1480) Optical devices : Bragg reflectors
(230.7390) Optical devices : Waveguides, planar
(310.2790) Thin films : Guided waves

ToC Category:
Optical Devices

Original Manuscript: January 29, 2007
Manuscript Accepted: March 13, 2007
Published: July 11, 2007

R. J. Stockermans and P. Rochon, "Experimental demonstration of photonic bandgaps in azopolymer resonant waveguide grating systems," J. Opt. Soc. Am. A 24, 2457-2463 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. D. Cheng, R. Biswas, E. Ozbay, S. McCalmont, G. Tuttle, and K.-M. Ho, "Optimized dipole antennas on photonic bandgap crystals," Appl. Phys. Lett. 67, 3399-3401 (1995). [CrossRef]
  2. A. David, C. Meier, R. Sharma, F. S. Diana, S. P. DenBaars, E. Hu, S. Nakamura, C. Weisbuch, and H. Benisty, "Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction," Appl. Phys. Lett. 87, 101107-1-101107-3 (2005). [CrossRef]
  3. N. Moll, R. F. Mahrt, C. Bauer, H. Giessen, B. Schnabel, E. B. Kley, and U. Scherf, "Evidence for bandedge lasing in a two-dimensional photonic bandgap polymer laser," Appl. Phys. Lett. 80, 734-736 (2002). [CrossRef]
  4. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  5. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  6. I. V. Konoplev, P. McGrane, A. W. Cross, K. Ronald, and A. D. R. Phelps, "Wave interference and band gap control in multiconductor one-dimensional Bragg structures," J. Appl. Phys. 97, 073101-1-073101-7 (2005). [CrossRef]
  7. J. Yoon, G. Lee, S. H. Song, C. Oh, and P. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003). [CrossRef]
  8. L. Lévesque and P. Rochon, "Surface plasmon photonic bandgap in azopolymer gratings sputtered with gold," J. Opt. Soc. Am. A 22, 2564-2568 (2005). [CrossRef]
  9. F. Kneubuhl, "Diffraction grating spectroscopy," Appl. Opt. 8, 505-519 (1969). [CrossRef] [PubMed]
  10. J. E. Bjorkholm and C. V. Shank, "Distributed-feedback lasers in thin-film optical waveguides," IEEE J. Quantum Electron. QE-8, 833-838 (1972). [CrossRef]
  11. K. S. Pennington and L. Kuhn, "Bragg diffraction beam splitter for thin film optical guided waves," Opt. Commun. 3, 357-359 (1971). [CrossRef]
  12. M. Zirngibl, C. R. Doerr, and C. H. Joyner, "Demonstration of a splitter/router based on a chirped waveguide grating router," IEEE Photon. Technol. Lett. 10, 87-89 (1998). [CrossRef]
  13. H. M. Stoll, "Distributed Bragg deflector: a multifunctional integrated optical device," Appl. Opt. 17, 2562-2569 (1978). [PubMed]
  14. M. L. Dakss, L. Kuhn, P. F. Heidrich, and B. A. Scott, "Grating coupler for efficient excitation of optical guided waves in thin films," Appl. Phys. Lett. 16, 523-525 (1970). [CrossRef]
  15. S. S. Wang and R. Magnusson, "Theory and applications of guided-mode resonance filters," Appl. Opt. 32, 2606-2613 (1993). [CrossRef] [PubMed]
  16. S. Suzuki, A. Himeno, Y. Tachikawa, and Y. Yamanda, "Multichannel optical wavelength selective switch with arrayed-waveguide grating multiplexer," Electron. Lett. 30, 1091-1092 (1994). [CrossRef]
  17. A. Yi-Yan, C. Wilkinson, and P. Laybourn, "Two-dimensional grating unit cell demultiplexer for thin film optical waveguides," IEEE J. Quantum Electron. QE-16, 1089-1092 (1980). [CrossRef]
  18. S. Suzuki, Y. Inoue, and Y. Ohmori, "Polarisation-insensitive arrayed waveguide grating multiplexer with SiO2-on-SiO2 structure," Electron. Lett. 30, 642-643 (1994). [CrossRef]
  19. A. Yariv and M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum Electron. QE-13, 233-253 (1977). [CrossRef]
  20. R. Petit, ed., Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, 1980). [CrossRef]
  21. A. Yariv, "Coupled mode theory for guided wave optics," IEEE J. Quantum Electron. QE-9, 919-933 (1973). [CrossRef]
  22. M. G. Moharam and T. K. Gaylord, "Rigorous coupled wave analysis of planar grating diffraction," J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  23. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  24. L. J. Martinez, A. Garcia-Martin, and P. A. Postigo, "Photonic band gaps in a two-dimensional hybrid triangular-graphite lattice," Opt. Express 12, 5684-5689 (2004). [CrossRef] [PubMed]
  25. J. Ctyroký, "Waveguide Bragg grating as a 1D photonic bandgap structure," Proc. SPIE 4016, 92-96 (2000). [CrossRef]
  26. G. Ma, S. H. Tang, J. Shen, Z. Zhang, and Z. Hua, "Defect-mode dependence of two-photon-absorption enhancement in a one-dimensional photonic band gap structure," Opt. Lett. 29, 1769-1771 (2004). [CrossRef] [PubMed]
  27. R. Zengerle, "Light propagation in singly and doubly periodic planar waveguides," J. Mod. Opt. 34, 1589-1617 (1987). [CrossRef]
  28. P. St. J. Russel, "Bragg resonances of light in optical superlattices," Phys. Rev. Lett. 56, 596-599 (1986). [CrossRef]
  29. C. Liguda, G. Böttger, A. Kuligk, R. Blum, M. Eich, H. Roth, J. Kunert, W. Morgenroth, H. Elsner, and H. G. Meyer, "Polymer photonic crystal slab waveguides," Appl. Phys. Lett. 78, 2434-2436 (2001). [CrossRef]
  30. J. P. Dowling and C. M. Bowden, "Atomic emission rates in inhomogeneous media with applications to photonic band structures," Phys. Rev. A 46, 612-622 (1992). [CrossRef] [PubMed]
  31. J. P. Dowling and C. M. Bowden, "Anomalous index of refraction in photonic bandgap materials," J. Mod. Opt. 41, 345-351 (1994). [CrossRef]
  32. C. R. Polluck, Fundamentals of Optoelectronics (R. D. Irwin, 1995), pp. 49-74.
  33. GSolver was developed in 1984 by the Grating Solver Development Company, P.O. Box 353, Allen, Texas, 75013, http://www.gsolver.com.
  34. P. Rochon, E. Batalla, and A. Natansohn, "Optically induced surface gratings on azoaromatic polymer films," Appl. Phys. Lett. 66, 136-138 (1995). [CrossRef]
  35. X. Mai, R. Moshrefzadeh, U. J. Gibson, G. I. Stegeman, and C. T. Eaton, "Simple versatile method for fabricating guided wave gratings," Appl. Opt. 24, 3155-3161 (1985). [CrossRef]
  36. P. Rochon, J. Paterson, and A. Natansohn, "Efficiency of optically induced surface gratings on azo polymer films," in Applied Optics and Optoelectronics 1996, Proceedings of the Applied Optics Divisional Conference of the Institute of Physics, K.T. V.Gratten, ed. (Institute of Physics, 1996), pp. 116-119.
  37. R. J. Stockermans and P. Rochon, "Modeling of photonic bandgaps in resonant waveguide grating systems using a simple theory for 1-D photonic crystals," J. Lightwave Technol. 25, 952-956(2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited