OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 24, Iss. 8 — Aug. 1, 2007
  • pp: 2464–2473

Modeling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2D spatial light modulator for reconfigurable beam steering

Richard James, F. Aníbal Fernández, Sally E. Day, Miloš Komarčević, and William A. Crossland  »View Author Affiliations

JOSA A, Vol. 24, Issue 8, pp. 2464-2473 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (698 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A nematic liquid crystal spatial light modulator used as a phase-modulating device and operating in the reflective mode is analyzed using three-dimensional modeling. Two configurations, which differ in their electrode placement relative to a fixed quarter-wave plate, are considered across a range of steering directions, with the grating conformal and in some cases oblique to the pixel grid. For each steering direction the sensitivity of the diffraction orders to the polarization state of the incident wavefront is studied. Optimal alignment of the liquid crystal is suggested to reduce this sensitivity.

© 2007 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: September 27, 2006
Revised Manuscript: February 16, 2007
Manuscript Accepted: February 18, 2007
Published: July 11, 2007

Richard James, F. Aníbal Fernández, Sally E. Day, Miloš Komarčević, and William A. Crossland, "Modeling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2D spatial light modulator for reconfigurable beam steering," J. Opt. Soc. Am. A 24, 2464-2473 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. F. McManamon, E. A. Watson, T. A. Dorschner, and L. J. Barnes, "Applications look at the use of liquid crystal writable gratings for steering passive radiation," Opt. Eng. 32, 2657-2664 (1993). [CrossRef]
  2. C. M. Titus, J. R. Kelly, E. C. Gartland, S. V. Shiyanovskii, J. Anderson, and P. J. Bos, "Asymmetric transmissive behavior of liquid-crystal diffraction gratings," Opt. Lett. 26, 1188-1190 (2001). [CrossRef]
  3. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, "Liquid-crystal blazed-grating beam deflector," Appl. Opt. 39, 6545-6555 (2000). [CrossRef]
  4. I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, "Reconfigurable multilevel phase holograms for optical switches," IEEE Photon. Technol. Lett. 14, 801-803 (2002). [CrossRef]
  5. K. L. Tan, S. T. Warr, I. G. Manolis, T. D. Wilkinson, M. M. Redmond, W. A. Crossland, R. J. Mears, and B. Robertson, "Dynamic holography for optical interconnections. II. Routing holograms with predictable location and intensity of each diffraction order," J. Opt. Soc. Am. A 18, 205-215 (2001). [CrossRef]
  6. A. Tan, A. Bakoba, N. Wolffer, B. Vinouze, and P. Gravey, "Improvement of response time of electrically addressed nematic crystal blazed gratings," Proc. SPIE 4089, 208-218 (2000). [CrossRef]
  7. A. Kali, A. Tan, P. Gravey, N. Wolffer, A. Lelah, and E. Pincemin, "Assessment of LCOS technology for the realization of scalable N×N optical switches," in Proceedings of Photonics in Switching, Versailles, 2003 (Société de l'Electricité de l'electronique et de Technologies de l'Information et de la Communication, 2003), pp. 262-264.
  8. S. Ahderom, M. Raisi, K. Alameh, and K. Eshraghian, "Dynamic WDM equalizer using opto-VLSI beam processing," IEEE Photon. Technol. Lett. 15, 1603-1605 (2003). [CrossRef]
  9. M. Aljada, K. Alameh, Y.-T. Lee, and I.-S. Chung, "High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors," Opt. Express 14, 6823-6836 (2006). [CrossRef] [PubMed]
  10. M. Komarcevic, I. G. Manolis, T. D. Wilkinson, and W. A. Crossland, "Polarization effects in reconfigurable liquid crystal phase holograms," Opt. Commun. 244, 105-110 (2005). [CrossRef]
  11. M. Bouvier and T. Scharf, "Analysis of nematic-liquid-crystal binary gratings with high spatial frequency," Opt. Eng. 39, 2129-2137 (2000). [CrossRef]
  12. E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, "Polarization properties of a nematic liquid-crystal spatial light modulator for phase modulation," J. Opt. Soc. Am. A 22, 177-184 (2005). [CrossRef]
  13. B. Apter, U. Efron, and E. Bahat-Treidel, "On the fringing-field effect in liquid-crystal beam-steering devices," Appl. Opt. 43, 11-19 (2004). [CrossRef] [PubMed]
  14. C. V. Brown, E. E. Kriezis, and S. J. Elston, "Optical diffraction from a liquid crystal phase grating," J. Appl. Phys. 91, 3495-3500 (2002). [CrossRef]
  15. R. James, F. A. Fernández, S. E. Day, M. Komarcevic, and W. A. Crossland, "Modelling of high resolution phase spatial light modulators," Mol. Cryst. Liq. Cryst. 422, 209-217 (2004). [CrossRef]
  16. F. A. Fernández, S. E. Day, P. Trwoga, H. Deng, and R. James, "Three-dimensional dynamic modelling of liquidcrystal display cells using finite elements," Mol. Cryst. Liq. Cryst. 375, 291-299 (2002). [CrossRef]
  17. R. C. Jones, "New calculus for the treatment of optical systems. I. Description and discussion of the calculus," J. Opt. Soc. Am. 31, 488-493 (1941). [CrossRef]
  18. D. W. Berreman, "Optics in stratified and anisotropic media: 4×4-matrix formulation," J. Opt. Soc. Am. 62, 502-510 (1972). [CrossRef]
  19. A. J. Davidson and S. J. Elston, "Three-dimensional beam propagation model for the optical path of light through a nematic liquid crystal," J. Mod. Opt. 53, 979-989 (2006). [CrossRef]
  20. K. Rokushima and J. Yamakita, "Analysis of anisotropic dielectric gratings," J. Opt. Soc. Am. 73, 901-908 (1983). [CrossRef]
  21. O. A. Peverini, D. Olivero, C. Oldano, D. K. G. de Boer, R. Cortie, R. Orta, and R. Tascone, "Reduced-order model technique for the analysis of anisotropic inhomogeneous media: application to liquid-crystal displays," J. Opt. Soc. Am. A 19, 1901-1909 (2002). [CrossRef]
  22. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Clarendon, 1993).
  23. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, "Infrared refractive indices of liquid crystals," J. Appl. Phys. 97, 073501 (2005). [CrossRef]
  24. C. Desimpel, "Liquid crystal devices with in-plane director rotation," Ph.D. thesis (Ghent University, 2006).
  25. C. Desimpel, J. Beeckman, H. Desmet, K. Neyts, R. James, and F. A. Fernández, "A four-electrode liquid crystal device for 2pi in-plane director rotation," J. Phys. D 38, 3976-3984 (2005). [CrossRef]
  26. J. A. Dobrowolski, L. Li, and J. N. Hilfiker, "Long-wavelength cutoff filters of a new type," Appl. Opt. 38, 4891-4903 (1999). [CrossRef]
  27. W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, H. M. O'Bryan, D. Sivco, and A. Y. Cho, "InGaAs metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts," Appl. Phys. Lett. 65, 1930-1932 (1994). [CrossRef]
  28. S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, and H. Bernitzki, "Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation," Thin Solid Films 335, 1-5 (1998). [CrossRef]
  29. J. M. Phillips, R. J. Cava, G. A. Thomas, S. A. Carter, J. Kwo, T. Siegrist, J. J. Krajewski, J. H. Marshall, W. F. Peck, Jr., and D. H. Rapkine, "Zinc-indium-oxide: a high conductivity transparent conducting oxide," Appl. Phys. Lett. 67, 2246-2248 (1995). [CrossRef]
  30. B. Chiou and J. Tsai, "Antireflective coating for ITO films deposited on glass substrate," J. Mater. Sci. 10, 491-495 (1999).
  31. M. Komarcevic, W. A. Crossland, T. D. Wilkinson, R. James, F. A. Fernández, and S. E. Day, "Framework for direct numerical optimization of liquid crystal blazed gratings," submitted to J. Opt. Soc. Am. A.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited