OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Steven A. Burns
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2516–2526

Stability of phase-contrast tomography

Glenn R. Myers, Timur E. Gureyev, and David M. Paganin  »View Author Affiliations


JOSA A, Vol. 24, Issue 9, pp. 2516-2526 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002516


View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Phase-contrast tomography (PCT) allows three-dimensional imaging of objects that display insufficient contrast for conventional absorption-based tomography. We prove that PCT is stable with respect to high-frequency noise in experimental phase-contrast data, unlike conventional tomography, which is known to be mildly unstable. We use known properties of the three-dimensional x-ray transform and transport-of-intensity equation to construct a matrix representation of the forward PCT operator. We then invert this formula to show that, under natural boundary conditions, the PCT reconstruction operator exists and leads to a unique solution. We show that the singular values s n of the reconstruction operator have asymptotic behavior s n = O ( n āˆ’ 3 āˆ• 2 ) , guaranteeing the mathematical stability of the reconstruction process.

© 2007 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(100.6890) Image processing : Three-dimensional image processing
(100.6950) Image processing : Tomographic image processing
(340.7440) X-ray optics : X-ray imaging

ToC Category:
Image Processing

History
Original Manuscript: October 3, 2006
Revised Manuscript: March 28, 2007
Manuscript Accepted: April 12, 2007
Published: July 11, 2007

Citation
Glenn R. Myers, Timur E. Gureyev, and David M. Paganin, "Stability of phase-contrast tomography," J. Opt. Soc. Am. A 24, 2516-2526 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-9-2516


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Wells, J. R. Davis, and M. J. Morgan, "Computed tomography," Mater. Forum 18, 111-133 (1994).
  2. F. Natterer, The Mathematics of Computerized Tomography (Society for Industrial and Applied Mathematics, 2001).
  3. R. Fitzgerald, "Phase-sensitive x-ray imaging," Phys. Today 53, 23-26 (2000).
  4. D. M. Paganin, Coherent X-Ray Optics (Oxford U. Press, 2006).
  5. M. R. Teague, "Deterministic phase retrieval: a Green's function solution," J. Opt. Soc. Am. 73, 1434-1441 (1983).
  6. T. E. Gureyev, A. Roberts, and K. A. Nugent, "Partially coherent fields, the transport-of-intensity equation, and phase uniqueness," J. Opt. Soc. Am. A 12, 1942-1946 (1995).
  7. S. C. Mayo, T. J. Davis, T. E. Gureyev, P. R. Miller, D. M. Paganin, A. Pogany, A. Stevenson, and S. W. Wilkins, "X-ray phase-contrast microscopy and microtomography," Opt. Express 11, 2289-2302 (2003).
  8. A. Groso, R. Abela, and M. Stampanoni, "Implementation of a fast method for high resolution phase contrast tomography," Opt. Express 14, 8103-8110 (2006). [CrossRef]
  9. A. J. Devaney, "Reconstructive tomography with diffracting wavefields," Inverse Probl. 2, 161-183 (1986). [CrossRef]
  10. C. Raven, A. Snigirev, I. Snigireva, P. Spanne, A. Souvorov, and V. Kohn, "Phase-contrast microtomography with coherent high-energy synchrotron x rays," Appl. Phys. Lett. 69, 1826-1828 (1996). [CrossRef]
  11. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landuyt, J. P. Guigay, and M. Schlenker, "Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays," Appl. Phys. Lett. 75, 2912-2914 (1999). [CrossRef]
  12. E. Wolf, "Three-dimensional structure determination of semi-transparent objects from holographic data," Opt. Commun. 1, 153-156 (1969). [CrossRef]
  13. G. Gbur and E. Wolf, "Diffraction tomography without phase information," Opt. Lett. 27, 1890-1892 (2002).
  14. M. A. Anastasio, D. Shi, D. De Carlo, and X. Pan, "Analytic image reconstruction in local phase-contrast tomography," Phys. Med. Biol. 49, 121-144 (2003). [CrossRef]
  15. M. A. Anastasio and D. Shi, "On the relationship between intensity diffraction tomography and phase-contrast tomography," Proc. SPIE 5535, 361-368 (2004).
  16. M. A. Anastasio, D. Shi, Y. Huang, and G. Gbur, "Phase-contrast tomography using incident spherical waves," Proc. SPIE 5535, 724-732 (2004).
  17. A. V. Bronnikov, "Reconstruction formulas in phase-contrast tomography," Opt. Commun. 171, 239-242 (1999). [CrossRef]
  18. A. V. Bronnikov, "Theory of quantitative phase-contrast computed tomography," J. Opt. Soc. Am. A 19, 472-480 (2002).
  19. X. Wu and H. Liu, "X-ray cone-beam phase tomography formulas based on phase-attenuation duality," Opt. Express 13, 6000-6014 (2005). [CrossRef]
  20. P. Maass, "The X-ray transform: singular value decomposition and resolution," Inverse Probl. 3, 729-741 (1987). [CrossRef]
  21. T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, "Linear algorithms for phase retrieval in the Fresnel region," Opt. Commun. 231, 53-70 (2004). [CrossRef]
  22. T. E. Gureyev, A. Roberts, and K. A. Nugent, "Phase retrieval with the transport-of-intensity equation: matrix solution with use of Zernike polynomials," J. Opt. Soc. Am. A 12, 1932-1940 (1995).
  23. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed. (Oxford U. Press, 1979), pp. 7-8.
  24. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators (American Mathematical Society, 1969).
  25. T. E. Gureyev and S. W. Wilkins, "On x-ray phase imaging with a point source," J. Opt. Soc. Am. A 15, 579-585 (1998).
  26. D. M. Paganin, A. Barty, P. J. McMahon, and K. A. Nugent, "Quantitative phase-amplitude microscopy. III. The effects of noise," J. Microsc. 214, 51-61 (2004). [CrossRef]
  27. T. E. Gureyev, D. M. Paganin, G. R. Myers, Y. I. Nesterets, and S. W. Wilkins, "Phase-and-amplitude computer tomography," Appl. Phys. Lett. 89, 034102 (2006). [CrossRef]
  28. D. M. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, "Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object," J. Microsc. 206, 33-40 (2002). [CrossRef]
  29. A. Erdelyi, W. Magnus, R. Oberhettinger, and F. Tricomi, Higher Transcendental Functions (McGraw-Hill, 1953).
  30. W. W. Bell, Special Functions for Scientists and Engineers (Dover, 1968) p. 199.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited