OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Steven A. Burns
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2568–2577

Geometry and dynamics in the Fresnel transforms of discrete systems

Kurt Bernardo Wolf and Guillermo Krötzsch  »View Author Affiliations


JOSA A, Vol. 24, Issue 9, pp. 2568-2577 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002568


View Full Text Article

Enhanced HTML    Acrobat PDF (853 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Free propagation in continuous optical and mechanical systems is generated by the momentum-squared operator and results in a shear of the phase space plane along the position coordinate. We examine three discrete versions of the Fresnel transform in periodic systems through their Wigner function on a toroidal phase space. But since it is topologically impossible to continuously and globally shear a torus, we examine a fourth version of the Fresnel transform on a spherical phase space, in a model based on the Lie algebra of angular momentum, where the corresponding Fresnel transform wrings the sphere.

© 2007 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(090.1970) Holography : Diffractive optics

ToC Category:
Fourier optics and signal processing

History
Original Manuscript: March 6, 2007
Revised Manuscript: April 11, 2007
Manuscript Accepted: April 16, 2007
Published: July 19, 2007

Citation
Kurt Bernardo Wolf and Guillermo Krötzsch, "Geometry and dynamics in the Fresnel transforms of discrete systems," J. Opt. Soc. Am. A 24, 2568-2577 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-9-2568


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  2. S. A. Collins, Jr., "Lens-system diffraction integral written in terms of matrix optics," J. Opt. Soc. Am. 60, 1168-1177 (1970). [CrossRef]
  3. M. Moshinsky and C. Quesne, "Oscillator systems," in Proceedings of the 15th Solvay Conference in Physics (1970) (Gordon & Breach, 1974).
  4. K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, 1979).
  5. G. García-Calderón and M. Moshinsky, "Wigner distribution function and the representation of canonical transformations in quantum mechanics," J. Phys. A 13, L185-L188 (1980). [CrossRef]
  6. V. Arrizón and J. Ojeda-Castañeda, "Fresnel diffraction of substructured gratings: matrix description," Opt. Lett. 20, 118-120 (1995). [CrossRef] [PubMed]
  7. V. Arrizón, J. G. Ibarra, and J. Ojeda-Castañeda, "Matrix formulation of the Fresnel transform of complex transmittance gratings," J. Opt. Soc. Am. A 13, 2414-2422 (1996). [CrossRef]
  8. S. C. Bradburn, J. Ojeda-Castañeda, and W. T. Cathey, "Matrix description of near-field diffraction and the fractional Fourier transform," J. Opt. Soc. Am. A 16, 316-322 (1999). [CrossRef]
  9. U. Leonhardt, "Discrete Wigner function and quantum-state tomography," Phys. Rev. A 53, 2998-3013 (1996). [CrossRef] [PubMed]
  10. N. M. Atakishiyev and K. B. Wolf, "Fractional Fourier-Kravchuk transform," J. Opt. Soc. Am. A 14, 1467-1477 (1997). [CrossRef]
  11. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, "Finite models of the oscillator," Phys. Part. Nucl. 36, Suppl. 3521-555 (2005).
  12. N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, "Wigner distribution function for finite systems," J. Math. Phys. 39, 6247-6261 (1998). [CrossRef]
  13. S. T. Ali, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, "The Wigner function for general Lie groups and the wavelet transform," Ann. Henri Poincare 1, 685-714 (2000). [CrossRef]
  14. K. B. Wolf and G. Krötzsch, "Geometry and dynamics in the fractional discrete Fourier transform," J. Opt. Soc. Am. A 24, 651-658 (2007). [CrossRef]
  15. K. B. Wolf, Geometric Optics on Phase Space (Springer-Verlag, 2004).
  16. E. P. Wigner, "On the quantum correction for thermodynamic equilibrium," Phys. Rev. 40, 749-759 (1932). [CrossRef]
  17. M. Hillery, R. F. O'Connel, M. O. Scully, and E. P. Wigner, "Distribution functions in physics: fundamentals," Phys. Rep. 259, 121-167 (1984). [CrossRef]
  18. M. J. Bastiaans, "Wigner distribution function applied to optical signals and systems," Opt. Commun. 25, 26-30 (1978). [CrossRef]
  19. W. K. Wooters, "A Wigner-function formulation of finite-state quantum mechanics," Ann. Phys. (N.Y.) 176, 1-21 (1987). [CrossRef]
  20. J. C. O'Neill and W. J. Williams, "Shift covariant time-frequency distributions of discrete signals," IEEE Trans. Signal Process. 47, 133-146 (1999). [CrossRef]
  21. S. Korkmaz, Harmonic Analysis in Finite Phase Space, M.Sc. thesis (Institute of Engineering and Science of Bilkent University, 2005).
  22. L. C. Biedenharn and J. D. Louck, "Angular Momentum in Quantum Physics," in Encyclopedia of Mathematics and Its Applications, G.-C.Rota, ed. (Addison-Wesley, 1981).
  23. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, "Contraction of the finite one-dimensional oscillator," Int. J. Mod. Phys. A 18, 317-327 (2003). [CrossRef]
  24. R. Gilmore, Lie Groups, Lie Algebras, and Some of their Applications (Wiley Interscience, 1978).
  25. H.-W. Lee, "Theory and applications of the quantum phase-space distribution functions," Phys. Rep. 259, 147-211 (1995). [CrossRef]
  26. K. B. Wolf, "Wigner distribution function for paraxial polychromatic optics," Opt. Commun. 132, 343-352 (1996). [CrossRef]
  27. S. M. Chumakov, A. B. Klimov, and K. B. Wolf, "On the connection of two Wigner functions for spin systems," Phys. Rev. A 61, 034101(3) (2000). [CrossRef]
  28. R. L. Stratonovich, "On distributions in representation space," Zh. Eksp. Teor. Fiz. 311012-1020 (1956) R. L. Stratonovich, "On distributions in representation space,"[Sov. Phys. JETP 4, 891-898 (1957)].
  29. G. S. Agarwal, "Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions," Phys. Rev. A 24, 2889-2896 (1981). [CrossRef]
  30. A. L. Rivera, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, "Evolution under polynomial Hamiltonians in quantum and optical phase spaces," Phys. Rev. A 55, 876-889 (1997). [CrossRef]
  31. S. M. Chumakov, A. Frank, and K. B. Wolf, "Finite Kerr medium: macroscopic quantum superposition states and Wigner functions on the sphere," Phys. Rev. A 60, 1817-1823 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited