OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Steven A. Burns
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2604–2621

Theory of chromatic noise masking applied to testing linearity of S-cone detection mechanisms

Franco Giulianini and Rhea T. Eskew, Jr.  »View Author Affiliations


JOSA A, Vol. 24, Issue 9, pp. 2604-2621 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002604


View Full Text Article

Enhanced HTML    Acrobat PDF (1096 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method for testing the linearity of cone combination of chromatic detection mechanisms is applied to S-cone detection. This approach uses the concept of mechanism noise, the noise as seen by a postreceptoral neural mechanism, to represent the effects of superposing chromatic noise components in elevating thresholds and leads to a parameter-free prediction for a linear mechanism. The method also provides a test for the presence of multiple linear detectors and off-axis looking. No evidence for multiple linear mechanisms was found when using either S-cone increment or decrement tests. The results for both S-cone test polarities demonstrate that these mechanisms combine their cone inputs nonlinearly.

© 2007 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: July 28, 2006
Revised Manuscript: April 5, 2007
Manuscript Accepted: April 7, 2007
Published: July 25, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Franco Giulianini and Rhea T. Eskew, Jr., "Theory of chromatic noise masking applied to testing linearity of S-cone detection mechanisms," J. Opt. Soc. Am. A 24, 2604-2621 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-9-2604


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Stockman, D. I. A. MacLeod, and D. D. DePriest, "The temporal properties of the human short-wave photoreceptors and their associated pathways," Vision Res. 31, 189-208 (1991). [CrossRef] [PubMed]
  2. C. F. Stromeyer 3rd, A. Chaparro, C. Rodriguez, D. Chen, E. Hu, and R. E. Kronauer, "Short-wave cone signal in the red-green detection mechanism," Vision Res. 38, 813-826 (1998). [CrossRef] [PubMed]
  3. R. M. Boynton, A. L. Nagy, and C. X. Olson, "A flaw in equations for predicting chromatic differences," Color Res. Appl. 8, 69-74 (1983). [CrossRef]
  4. S. M. Wuerger, P. Atkinson, and S. Cropper, "The cone inputs to the unique-hue mechanisms," Vision Res. 45, 3210-3223 (2005). [CrossRef] [PubMed]
  5. J. Krauskopf, D. R. Williams, and D. W. Heeley, "Cardinal directions of color space," Vision Res. 22, 1123-1131 (1982). [CrossRef] [PubMed]
  6. J. S. McLellan and R. T. Eskew, Jr., "ON and OFF S-cone pathways have different long-wave cone inputs," Vision Res. 40, 2449-2465 (2000). [CrossRef] [PubMed]
  7. J. J. Wisowaty, "An action spectrum for the production of transient tritanopia," Vision Res. 23, 769-774 (1983). [CrossRef] [PubMed]
  8. P. G. Polden and J. D. Mollon, "Reversed effect of adapting stimuli on visual sensitivity," Proc. R. Soc. London, Ser. B 210, 235-272 (1980). [CrossRef]
  9. R. T. Eskew, Jr., J. S. McLellan, and F. Giulianini, "Chromatic detection and discrimination," in Color Vision: From Genes to Perception, K.R.Gegenfurtner and L.T.Sharpe, eds. (Cambridge U. Press, 1999), pp. 345-368.
  10. C. F. Stromeyer 3rd, G. R. Cole, and R. E. Kronauer, "Second-site adaptation in the red-green chromatic pathways," Vision Res. 25, 219-237 (1985). [CrossRef] [PubMed]
  11. R. T. Eskew, Jr., J. R. Newton, and F. Giulianini, "Chromatic detection and discrimination analyzed by a Bayesian classifier," Vision Res. 41, 893-909 (2001). [CrossRef] [PubMed]
  12. G. R. Cole, T. Hine, and W. McIlhagga, "Detection mechanisms in L-, M-, and S-cone contrast space," J. Opt. Soc. Am. A 10, 38-51 (1993). [CrossRef] [PubMed]
  13. M. J. Sankeralli and K. T. Mullen, "Estimation of the L-, M-, and S-cone weights of the postreceptoral detection mechanisms," J. Opt. Soc. Am. A 13, 906-915 (1996). [CrossRef]
  14. A. M. Derrington, J. Krauskopf, and P. Lennie, "Chromatic mechanisms in lateral geniculate nucleus of macaque," J. Physiol. (London) 357, 241-265 (1984).
  15. D. M. Dacey and B. B. Lee, "The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type," Nature 367, 731-735 (1994). [CrossRef] [PubMed]
  16. D. M. Dacey and O. S. Packer, "Colour coding in the primate retina: diverse cell types and cone-specific circuitry," Curr. Opin. Neurobiol. 13, 421-427 (2003). [CrossRef] [PubMed]
  17. D. M. Dacey, B. B. Peterson, F. R. Robinson, and P. D. Gamlin, "Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types," Neuron 37, 15-27 (2003). [CrossRef] [PubMed]
  18. E. J. Chichilnisky and D. A. Baylor, "Receptive-field microstructure of blue-yellow ganglion cells in primate retina," Nat. Neurosci. 2, 889-893 (1999). [CrossRef] [PubMed]
  19. C. E. Landisman and D. Y. Ts'o, "Color processing in macaque striate cortex: electrophysiological properties," J. Neurophysiol. 87, 3138-3151 (2002). [PubMed]
  20. B. R. Conway, "Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (V-1)," J. Neurosci. 21, 2768-2783 (2001). [PubMed]
  21. E. N. Johnson, M. J. Hawken, and R. Shapley, "Cone inputs in macaque primary visual cortex," J. Neurophysiol. 91, 2501-2514 (2004). [CrossRef] [PubMed]
  22. G. D. Horwitz, E. J. Chichilnisky, and T. D. Albright, "Blue-yellow signals are enhanced by spatiotemporal luminance contrast in macaque V1," J. Neurophysiol. 93, 2263-2278 (2005). [CrossRef]
  23. N. P. Cottaris and R. L. De Valois, "Temporal dynamics of chromatic tuning in macaque primary visual cortex," Nature 395, 896-900 (1998). [CrossRef] [PubMed]
  24. M. D'Zmura and K. Knoblauch, "Spectral bandwidths for the detection of color," Vision Res. 38, 3117-3128 (1998). [CrossRef]
  25. D. H. Brainard, "Cone contrast and opponent modulation color spaces," in Human Color Vision, 2nd ed., P.K.Kaiser and R.M.Boynton, eds. (Optical Society of America,1996).
  26. C. Noorlander and J. J. Koenderink, "Spatial and temporal discrimination ellipsoids in color space," J. Opt. Soc. Am. 73, 1533-1543 (1983). [CrossRef] [PubMed]
  27. A. Burgess and H. B. Barlow, "The precision of numerosity discrimination in arrays of random dots," Vision Res. 23, 811-820 (1983). [CrossRef] [PubMed]
  28. G. E. Legge, D. Kersten, and A. E. Burgess, "Contrast discrimination in noise," J. Opt. Soc. Am. A 4, 391-404 (1987). [CrossRef] [PubMed]
  29. D. G. Pelli, "The quantum efficiency of vision," in Vision: Coding and Efficiency, C.Blakemore, ed. (Cambridge U. Press, 1990), pp. 3-24.
  30. K. R. Gegenfurtner and D. C. Kiper, "Contrast detection in luminance and chromatic noise," J. Opt. Soc. Am. A 9, 1880-1888 (1992). [CrossRef] [PubMed]
  31. M. J. Sankeralli and K. T. Mullen, "Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space," J. Opt. Soc. Am. A 14, 2633-2646 (1997). [CrossRef]
  32. A. Chaparro, C. F. Stromeyer 3rd, E. P. Huang, R. E. Kronauer, and R. T. Eskew, Jr., "Colour is what the eye sees best," Nature 361, 348-350 (1993). [CrossRef] [PubMed]
  33. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th ed. (McGraw-Hill, 2002).
  34. I. Powell, "Lenses for correcting chromatic aberration of the eye," Appl. Opt. 20, 4152-4155 (1981). [CrossRef] [PubMed]
  35. F. Giulianini and R. T. Eskew, Jr., "Chromatic masking in the (ΔL/L,ΔM/M) plane of cone-contrast space reveals only two detection mechanisms," Vision Res. 38, 3913-3926 (1998). [CrossRef]
  36. A. B. Watson, "Probability summation over time," Vision Res. 19, 515-522 (1979). [CrossRef] [PubMed]
  37. D. G. Pelli and L. Zhang, "Accurate control of contrast on microcomputer displays," Vision Res. 31, 1337-1350 (1991). [CrossRef] [PubMed]
  38. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 1969).
  39. G. R. Cole, C. F. Stromeyer 3rd, and R. E. Kronauer, "Visual interactions with luminance and chromatic stimuli," J. Opt. Soc. Am. A 7, 128-140 (1990). [CrossRef] [PubMed]
  40. T. Hansen and K. R. Gegenfurtner, "Higher level chromatic mechanisms for image segmentation," J. Vision 6, 239-259 (2006). [CrossRef]
  41. D. T. Lindsey and A. M. Brown, "Masking of grating detection in the isoluminant plane of DKL color space," Visual Neurosci. 21, 269-273 (2004). [CrossRef]
  42. Q. Zaidi, A. Shapiro, and D. Hood, "The effect of adaptation on the differential sensitivity of the S-cone color system," Vision Res. 32, 1297-1318 (1992). [CrossRef] [PubMed]
  43. C. F. Stromeyer 3rd, R. Thabet, A. Chaparro, and R. E. Kronauer, "Spatial masking does not reveal mechanisms selective to combined luminance and red-green color," Vision Res. 39, 2099-2112 (1999). [CrossRef] [PubMed]
  44. K. Shinomori, L. Spillmann, and J. S. Werner, "S-cone signals to temporal OFF-channels: asymmetrical connections to postreceptoral chromatic mechanisms," Vision Res. 39, 39-49 (1999). [CrossRef] [PubMed]
  45. J. R. Newton and R. T. Eskew, Jr., "Chromatic detection and discrimination in the periphery: a postreceptoral loss of color sensitivity," Visual Neurosci. 20, 511-521 (2003). [CrossRef]
  46. C. F. Stromeyer 3rd, J. Lee, and R. T. Eskew, Jr., "Peripheral chromatic sensitivity for flashes: a post-receptoral red-green asymmetry," Vision Res. 32, 1865-1873 (1992). [CrossRef] [PubMed]
  47. M. Sakurai and K. T. Mullen, "Cone weights for the two cone-opponent systems in peripheral vision and asymmetries of cone contrast sensitivity," Vision Res. 46, 4346-4354 (2006). [CrossRef] [PubMed]
  48. M. J. Sankeralli and K. T. Mullen, "Bipolar or rectified chromatic detection mechanisms?," Visual Neurosci. 18, 127-135 (2001). [CrossRef]
  49. S. G. Solomon and P. Lennie, "Chromatic gain controls in visual cortical neurons," J. Neurosci. 25, 4779-4792 (2005). [CrossRef] [PubMed]
  50. K. Klug, S. Herr, I. T. Ngo, P. Sterling, and S. Schein, "Macaque retina contains an S-cone OFF midget pathway," J. Neurosci. 23, 9881-9887 (2003). [PubMed]
  51. S. Chatterjee and E. M. Callaway, "Parallel colour-opponent pathways to primary visual cortex," Nature 426, 668-671 (2003). [CrossRef] [PubMed]
  52. E. N. Pugh, Jr. and J. D. Mollon, "A theory of the π1 and π3 color mechanisms of Stiles," Vision Res. 19, 293-312 (1979). [CrossRef] [PubMed]
  53. J. S. Werner and B. R. Wooten, "Opponent chromatic mechanisms: relation to photopigments and hue naming," J. Opt. Soc. Am. 69, 422-434 (1979). [CrossRef] [PubMed]
  54. J. Larimer, D. H. Krantz, and C. M. Cicerone, "Opponent process additivity. II. Yellow/blue equilibria and nonlinear models," Vision Res. 15, 723-731 (1975). [CrossRef] [PubMed]
  55. C. H. Elzinga and C. M. M. de Weert, "Nonlinear codes for the yellow/blue mechanism," Vision Res. 24, 911-922 (1984). [CrossRef] [PubMed]
  56. F. Giulianini, "The yellow-blue detection mechanism as revealed by chromatic noise masking," Ph.D. thesis (Northeastern University, 1998).
  57. C. F. Stromeyer 3rd and J. Lee, "Adaptational effects of short wave cone signals on red-green chromatic detection," Vision Res. 28, 931-940 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited