OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Steven A. Burns
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2783–2796

Effect of sampling on real ocular aberration measurements

Lourdes Llorente, Susana Marcos, Carlos Dorronsoro, and Stephen A. Burns  »View Author Affiliations


JOSA A, Vol. 24, Issue 9, pp. 2783-2796 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002783


View Full Text Article

Enhanced HTML    Acrobat PDF (1581 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The minimum number of samples necessary to fully characterize the aberration pattern of the eye is a question under debate in the clinical as well as the scientific community. We performed repeated measurements of ocular aberrations in 12 healthy nonsurgical human eyes and in 3 artificial eyes, using different sampling patterns (hexagonal, circular, and rectangular with 19 to 177 samples, and 3 radial patterns with 49 sample coordinates corresponding to zeros of the Albrecht, Jacobi, and Legendre functions). For each measurement set we computed two different metrics based on the root-mean-square (RMS) of difference maps (RMS_Diff) and the proportional change in the wavefront ( W % ) . These metrics are used to compare wavefront estimates as well as to summarize results across eyes. We used computer simulations to extend our results to “abnormal eyes” (keratoconic, post-LASIK, and post–radial keratotomy eyes). We found that the spatial distribution of the samples can be more important than the number of samples for both our measured as well as our simulated “abnormal” eyes. Experimentally, we did not find large differences across patterns except, as expected, for undersampled patterns.

© 2007 Optical Society of America

OCIS Codes
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: December 5, 2006
Revised Manuscript: March 22, 2007
Manuscript Accepted: March 26, 2007
Published: August 8, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Lourdes Llorente, Susana Marcos, Carlos Dorronsoro, and Stephen A. Burns, "Effect of sampling on real ocular aberration measurements," J. Opt. Soc. Am. A 24, 2783-2796 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-9-2783


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Atchison, M. Collins, C. Wildsoet, J. Christensen, and M. Waterworth, "Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique," Vision Res. 35, 313-323 (1995). [CrossRef] [PubMed]
  2. R. Calver, M. Cox, and D. Elliott, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999). [CrossRef]
  3. T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, "Changes in corneal wavefront aberrations with aging," Invest. Ophthalmol. Visual Sci. 40, 1351-1355 (1999).
  4. W. N. Charman, "Aberrations and myopia," Ophthalmic Physiol. Opt. 25, 285-301 (2005). [CrossRef] [PubMed]
  5. T. Seiler, M. Kaemmerer, P. Mierdel, and H.-E. Krinke, "Ocular optical aberrations after photorefractive keratectomy for myopia and myopic astigmatism," Arch. Ophthalmol. (Chicago) 118, 17-21 (2000).
  6. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing," Invest. Ophthalmol. Visual Sci. 42, 1396-1403 (2001).
  7. A. Guirao, M. Redondo, E. Geraghty, P. Piers, S. Norrby, and P. Artal, "Corneal optical aberrations and retinal image quality in patients in whom monofocal intraocular lenses were implanted," Arch. Ophthalmol. (Chicago) 120, 1143-1151 (2002).
  8. S. Barbero, S. Marcos, and I. Jimenez-Alfaro, "Optical aberrations of intraocular lenses measured in vivo andin vitro," J. Opt. Soc. Am. A 20, 1841-1851 (2003). [CrossRef]
  9. X. Hong, N. Himebaugh, and L. Thibos, "On-eye evaluation of optical performance of rigid and soft contact lenses," Optom. Vision Sci. 78, 872-880 (2001). [CrossRef]
  10. J. A. Martin and A. Roorda, "Predicting and assessing visual performance with multizone bifocal contact lenses," Optom. Vision Sci. 80, 812-819 (2003). [CrossRef]
  11. C. Dorronsoro, S. Barbero, L. Llorente, and S. Marcos, "On-eye measurement of optical performance of rigid gas permeable contact lenses based on ocular and corneal aberrometry," Optom. Vision Sci. 80, 115-125 (2003). [CrossRef]
  12. J. Liang, D. R. Williams, and D. T. Miller, "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  13. A. Roorda, F. Romero-Borja, I. Donnelly, W. J. H. Queener, T. J. Hebert, and M. C. W. Campbell, "Adaptive optics scanning laser ophthalmoscopy," Opt. Express 10, 405-412 (2002). [PubMed]
  14. S. A. Burns, S. Marcos, A. E. Elsner, and S. Bará, "Contrast improvement for confocal retinal imaging using phase correcting plates," Opt. Lett. 27, 400-402 (2002). [CrossRef]
  15. M. Mrochen, M. Kaemmerer, and T. Seiler, "Clinical results of wavefront-guided laser in situ keratomileusis 3 months after surgery," J. Cataract Refractive Surg. 27, 201-207 (2001). [CrossRef]
  16. R. Nuijts, V. A. Nabar, W. J. Hament, and F. Eggink, "Wavefront-guided versus standard laser in situ keratomileusis to correct low to moderate myopia," J. Cataract Refractive Surg. 28, 1907-1913 (2002). [CrossRef]
  17. R. Navarro and M. A. Losada, "Aberrations and relative efficiency of light pencils in the living human eye," Optom. Vision Sci. 74, 540-547 (1997). [CrossRef]
  18. J. C. He, S. Marcos, R. H. Webb, and S. A. Burns, "Measurement of the wave-front aberration of the eye by a fast psychophysical procedure," J. Opt. Soc. Am. A 15, 2449-2456 (1998). [CrossRef]
  19. J. Z. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994). [CrossRef]
  20. W. H. Southwell, "Wave-front estimation from wave-front slope measurements," J. Opt. Soc. Am. 70, 998-1006 (1980). [CrossRef]
  21. R. Cubalchini, "Modal wave-front estimation from phase derivate measurements," J. Opt. Soc. Am. 69, 972-977 (1979). [CrossRef]
  22. S. Rios, E. Acosta, and S. Bara, "Hartmann sensing with Albrecht grids," Opt. Commun. 133, 443-453 (1997). [CrossRef]
  23. O. Soloviev and G. Vdovin, "Hartmann-Shack test with random masks for modal wavefront reconstruction," Opt. Express 13, 9570-9584 (2005). [CrossRef] [PubMed]
  24. S. Bará, S. Ríos, and E. Acosta, "Integral evaluation of the modal phase coefficients in curvature sensing: Albrecht's cubatures," J. Opt. Soc. Am. A 13, 1467-1474 (1996). [CrossRef]
  25. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006). [CrossRef] [PubMed]
  26. R. A. Applegate, E. J. Sarver, and V. Khemsara, "Are all aberrations equal?" J. Refract. Surg. 18, S556-S562 (2002). [PubMed]
  27. S. A. Burns, J. S. McLellan, and S. Marcos, "Sampling effects on measurements of wavefront aberrations of the eye," Invest. Ophthalmol. Visual Sci. Suppl. 2, 44, U463 (2003).
  28. L. Llorente, C. Dorronsoro, S. A. Burns, and S. Marcos, "Influence of pupil sampling and density on ocular wave aberration measurements," presented at the Second International Topical Meeting on Physiological Optics, Granada, Spain (European Optical Society), September 20-23, 2004. http://www.ugr.es/~phoeos04/proceeding.pdf.
  29. L. Diaz-Santana, G. Walker, and S. X. Bara, "Sampling geometries for ocular aberrometry: a model for evaluation of performance," Opt. Express 13, 8801-8818 (2005). [CrossRef] [PubMed]
  30. E. Moreno-Barriuso, S. Marcos, R. Navarro, and S. A. Burns, "Comparing laser ray tracing, spatially resolved refractometer and Hartmann-Shack sensor to measure the ocular wavefront aberration," Optom. Vision Sci. 78, 152-156 (2001). [CrossRef]
  31. L. Llorente, S. Barbero, D. Cano, C. Dorronsoro, and S. Marcos, "Myopic versus hyperopic eyes: axial length, corneal shape and optical aberrations," J. Vision 4, 288-298 (2004). [CrossRef]
  32. American National Standards Institute, "American National Standard for the safe use of lasers," Standard Z-136.1-1993 (The Laser Institute of America, 1993).
  33. C. E. Campbell, "A test eye for wavefront eye refractors," J. Cataract Refractive Surg. 21, 127-140 (2005).
  34. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, and V. S. T. Members, "Standards for reporting the optical aberrations of eyes," in Vision Science and Its Applications, Vol. 35 of 2000 OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 110-130.
  35. S. Marcos, L. Díaz-Santana, L. Llorente, and D. C., "Ocular aberrations with ray tracing and Shack-Hartmann wavefront sensors: Does polarization play a role?" J. Opt. Soc. Am. A 19, 1063-1072 (2002). [CrossRef]
  36. N. Davies, L. Diaz-Santana, and D. Lara-Saucedo, "Repeatability of ocular wavefront measurement," Optom. Vision Sci. 80, 142-150 (2003). [CrossRef]
  37. S. Barbero, S. Marcos, J. Merayo-Lloves, and E. Moreno-Barriuso, "Validation of the estimation of corneal aberrations from videokeratography in keratoconus," J. Refract. Surg. 18, 263-270 (2002). [PubMed]
  38. S. Marcos, B. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK for myopia from total and corneal aberrations," Invest. Ophthalmol. Visual Sci. 42, 3349-3356 (2001).
  39. M. K. Smolek and S. D. Klyce, "Zernike polynomial fitting fails to represent all visually significant corneal aberrations," Invest. Ophthalmol. Visual Sci. 44, 4676-4681 (2003). [CrossRef]
  40. J. D. Marsack, K. Pesudovs, E. J. Sarver, and R. A. Applegate, "Impact of Zernike-fit error on simulated high- and low-contrast acuity in keratoconus: implications for using Zernike-based corrections," J. Opt. Soc. Am. A 23, 769-776 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited