OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Steven A. Burns
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2822–2830

Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green’s theorem surface integral equations in parametric form

Vincenzo Giannini and Jose A. Sánchez-Gil  »View Author Affiliations

JOSA A, Vol. 24, Issue 9, pp. 2822-2830 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (691 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study theoretically the light scattering from metal wires of arbitrary cross section, with emphasis on the occurrence of plasmon resonances. We make use of the rigorous formulation of the Green’s theorem surface integral equations of the electromagnetic wave scattering, written for an arbitrary number of scatterers described in parametric form. We have investigated the scattering cross sections for nanowires of various shapes (circle, triangles, rectangles, and stars), either isolated or interacting. The relationship between the cross sectional shape and the spectral dependence of the plasmon resonances is studied, including the impact of nanoparticle coupling in the case of interacting scatterers. Near-field intensity maps are also shown that shed light on the plasmon resonance features and the occurrence of local field enhancements.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles

ToC Category:

Original Manuscript: February 6, 2007
Revised Manuscript: May 11, 2007
Manuscript Accepted: May 17, 2007
Published: August 9, 2007

Vincenzo Giannini and Jose A. Sánchez-Gil, "Calculations of light scattering from isolated and interacting metallic nanowires of arbitrary cross section by means of Green's theorem surface integral equations in parametric form," J. Opt. Soc. Am. A 24, 2822-2830 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier and H. A. Atwater, "Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures," J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  2. E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  4. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  5. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: A tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005). [CrossRef] [PubMed]
  6. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Hankel, and V. Sandoghdar, "Optical microscopy via spectral modifications of a nanoantenna," Phys. Rev. Lett. 95, 200801 (2005). [CrossRef] [PubMed]
  7. A. Ono, J. Kato, and S. Kawata, "Subwavelength optical imaging through a metallic nanorod array," Phys. Rev. Lett. 95, 267407 (2005). [CrossRef]
  8. A. Madrazo and M. Nieto-Vesperinas, "Scattering of electromagnetic waves from a cylinder in front of a conducting plane," J. Opt. Soc. Am. A 12, 1268-1309 (1995). [CrossRef]
  9. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Plasmon resonances of silver nanowires with a nonregular cross section," Phys. Rev. B 64, 235402 (2001). [CrossRef]
  10. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003). [CrossRef]
  11. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005). [CrossRef]
  12. K. L. Shuford, M. A. Ratner, and G. C. Schatz, "Multipolar excitation in triangular nanoprisms," J. Chem. Phys. 123, 114713 (2005). [CrossRef]
  13. U. Hohenester and J. Krenn, "Surface plasmon resonances of a single and coupled metallic nanoparticles: A boundary integral method approach," Phys. Rev. B 72, 195429 (2005). [CrossRef]
  14. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 14, 9988-9999 (2006). [CrossRef] [PubMed]
  15. F. Moreno, F. González, and J. M. Saiz, "Plasmon spectroscopy of metallic nanoparticles above flat dielectric substrates," Opt. Lett. 31, 1902-1904 (2006). [CrossRef] [PubMed]
  16. S. E. Sburlan, L. A. Blanco, and M. Nieto-Vesperinas, "Plasmon excitation in sets of nanoscale cylinders and spheres," Phys. Rev. B 73, 035403 (2006). [CrossRef]
  17. V. Giannini, J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Collective model for the surface-plasmon-mediated electromagnetic emission from molecular layers on metallic nanostructures," Phys. Rev. B 75, 235447 (2007). [CrossRef]
  18. E. J. Zeman and G. C. Schatz, "An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, Al, Ga, In, Zn, and Cd," J. Phys. C 91, 634-643 (1987).
  19. J. A. Sánchez-Gil and J. V. García-Ramos, "Local and average electromagnetic enhancement in surface-enhanced Raman scattering from self-affine fractal metal substrates with nanoscale irregularities," Chem. Phys. Lett. 367, 361-366 (2003). [CrossRef]
  20. H. Xu, J. Aizpurua, M. Käll, and P. Apell, "Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering," Phys. Rev. E 62, 4318-4324 (2000). [CrossRef]
  21. S. Nie and S. R. Emory, "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  22. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perlman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett. 78, 1667-1670 (1997). [CrossRef]
  23. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998). [CrossRef]
  24. A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory," Phys. Rev. B 73, 155404 (2006). [CrossRef]
  25. C. Girard and A. Dereux, "Near-field optics theories," Rep. Prog. Phys. 59, 657-699 (1996). [CrossRef]
  26. A. A. Maradudin, T. Michel, A. R. McGurn, and E. R. Mendéz, "Enhanced backscattering of light from a random grating," Ann. Phys. (N.Y.) 203, 255-307 (1990). [CrossRef]
  27. J. A. Sánchez-Gil and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surfaces," J. Opt. Soc. Am. A 8, 1270-1286 (1991). [CrossRef]
  28. F. J. García de Abajo and J. Aizpurua, "Numerical simulation of electron energy loss near inhomogeneous dielectrics," Phys. Rev. B 56, 15873-15884 (1997). [CrossRef]
  29. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, 1991).
  30. J. A. Sánchez-Gil, J. V. García-Ramos, and E. R. Méndez, "Near-field electromagnetic wave scattering from random self-affine fractal metal surfaces: Spectral dependence of local field enhancement and their statistics in connection with surface-enhanced Raman scattering," Phys. Rev. B 62, 10515-10525 (2000). [CrossRef]
  31. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  32. A. Mendoza-Suárez and E. R. Méndez, "Light scattering by a reentrant fractal surface," Appl. Opt. 36, 3521-3531 (1997). [CrossRef] [PubMed]
  33. C. I. Valencia, E. R. Méndez, and B. Mendoza, "Second-harmonic generation in the scattering of light by two-dimensional particles," J. Opt. Soc. Am. B 20, 2150-2161 (2003). [CrossRef]
  34. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz, "Spectral resonances of plasmon resonant nanoparticles with a non-regular shape," Opt. Express 6, 213-219 (2001). [CrossRef]
  35. C. L. Nehl, H. Liao, and H. Hafner, "Optical properties of star-shaped gold nanoparticles," Nano Lett. 6, 683-688 (2006). [CrossRef] [PubMed]
  36. J. A. Sánchez-Gil, "Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus Anderson-localized resonances," Phys. Rev. B 68, 113410 (2003). [CrossRef]
  37. J. P. Kottmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8, 665-663 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited