OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Steven A. Burns
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2871–2878

Geometry and dynamics of squeezing in finite systems

Kurt Bernardo Wolf and Guillermo Krötzsch  »View Author Affiliations


JOSA A, Vol. 24, Issue 9, pp. 2871-2878 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002871


View Full Text Article

Enhanced HTML    Acrobat PDF (713 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Squeezing and its inverse magnification form a one-parameter group of linear canonical transformations of continuous signals in paraxial optics. We search for corresponding unitary matrices to apply on signal vectors in N-point finite Hamiltonian systems. The analysis is extended to the phase space representation by means of Wigner quasi-probability distribution functions on the discrete torus and on the sphere. Together with two previous studies of the fractional Fourier and Fresnel transforms, we complete the finite counterparts of the group of linear canonical transformations.

© 2007 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(070.6020) Fourier optics and signal processing : Continuous optical signal processing
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(080.1010) Geometric optics : Aberrations (global)
(090.1970) Holography : Diffractive optics
(200.4560) Optics in computing : Optical data processing

ToC Category:
Fourier optics and signal processing

History
Original Manuscript: April 16, 2007
Manuscript Accepted: May 23, 2007
Published: August 16, 2007

Citation
Kurt Bernardo Wolf and Guillermo Krötzsch, "Geometry and dynamics of squeezing in finite systems," J. Opt. Soc. Am. A 24, 2871-2878 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-9-2871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. B. Wolf and G. Krötzsch, "Geometry and dynamics in the fractional discrete Fourier transform," J. Opt. Soc. Am. A 24, 651-658 (2007). [CrossRef]
  2. K. B. Wolf and G. Krötzsch, "Geometry and dynamics in the Fresnel transform in finite systems," J. Opt. Soc. Am. A 24, 2568-2577 (2007). [CrossRef]
  3. M. Moshinsky and C. Quesne, "Linear canonical transformations and their unitary representation," J. Math. Phys. 12, 1772-1780 (1971). [CrossRef]
  4. K. B. Wolf, Integral Transforms in Science and Engineering (Plenum, 1979).
  5. I. D. Ado, "The representation of Lie algebras by matrices," Trends Am. Math. Soc. 9, 308-327 (1962).
  6. E. P. Wigner, "On the quantum correction for thermodynamic equilibrium," Phys. Rev. 40, 749-759 (1932). [CrossRef]
  7. M. Hillery, R. F. O'Connel, M. O. Scully, and E. P. Wigner, "Distribution functions in physics: fundamentals," Phys. Rep. 259, 121-167 (1984). [CrossRef]
  8. H.-W. Lee, "Theory and applications of the quantum phase-space distribution functions," Phys. Rep. 259, 147-211 (1995). [CrossRef]
  9. U. Leonhardt, "Discrete Wigner function and quantum-state tomography," Phys. Rev. A 53, 2998-3013 (1996). [CrossRef] [PubMed]
  10. W. K. Wooters, "A Wigner-function formulation of finite-state quantum mechanics," Ann. Phys. (N.Y.) 176, 1-21 (1987). [CrossRef]
  11. N. M. Atakishiyev and K. B. Wolf, "Fractional Fourier-Kravchuk transform," J. Opt. Soc. Am. A 14, 1467-1477 (1997). [CrossRef]
  12. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, "Finite models of the oscillator," Phys. Part. Nucl. 36, 521-555 (2005).
  13. N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, "Wigner distribution function for finite systems," J. Math. Phys. 39, 6247-6261 (1998). [CrossRef]
  14. L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics, Encyclopedia of Mathematics and Its Applications, G.-C.Rota, ed. (Addison-Wesley, 1981).
  15. A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable (Springer-Verlag, 1991).
  16. S. T. Ali, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, "The Wigner function for general Lie groups and the wavelet transform," Ann. Inst. Henri Poincare 1, 685-714 (2000). [CrossRef]
  17. R. Gilmore, Lie Groups, Lie Algebras, and Some of their Applications (Wiley Interscience, New York, 1978).
  18. S. M. Chumakov, A. Frank, and K. B. Wolf, "Finite Kerr medium: macroscopic quantum superposition states and Wigner functions on the sphere," Phys. Rev. A 60, 1817-1823 (1999). [CrossRef]
  19. R. L. Stratonovich, "On distributions in representation space," JETP 31, 1012-1020 (1956) R. L. Stratonovich,[Sov. Phys. JETP 4, 891-898 (1957)].
  20. G. S. Agarwal, "Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions," Phys. Rev. A 24, 2889-2896 (1981). [CrossRef]
  21. S. M. Chumakov, A. B. Klimov, and K. B. Wolf, "On the connection of two Wigner functions for spin systems," Phys. Rev. A 61, 034101(3), (2000). [CrossRef]
  22. K. B. Wolf, Geometric Optics on Phase Space (Springer-Verlag, 2004).
  23. A. L. Rivera, N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, "Evolution under polynomial Hamiltonians in quantum and optical phase spaces," Phys. Rev. A 55, 876-889 (1997). [CrossRef]
  24. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, "Contraction of the finite one-dimensional oscillator," Int. J. Mod. Phys. A 18, 317-327 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited