OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Steven A. Burns
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 2953–2962

Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient

Stéphane Durant, Olivier Calvo-Perez, Nicolas Vukadinovic, and Jean-Jacques Greffet  »View Author Affiliations


JOSA A, Vol. 24, Issue 9, pp. 2953-2962 (2007)
http://dx.doi.org/10.1364/JOSAA.24.002953


View Full Text Article

Enhanced HTML    Acrobat PDF (825 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a numerical investigation of the light scattering in an absorbing medium with randomly distributed scatterers. The extinction coefficient is derived from an ensemble of numerical solutions of Maxwell’s equations for many different realizations of the system. Results are in good agreement with the predictions given by the effective medium theory under the independent-scattering approximation. Beyond the independent-scattering approximation, we explore the domain of validity of an effective medium theory that takes into account correlations between pairs of scatterers. A good agreement is obtained with a filling ratio up to 30 % for scatterers with a relative refractive index contrast lower than 20 % and size parameters near unity.

© 2007 Optical Society of America

OCIS Codes
(030.5620) Coherence and statistical optics : Radiative transfer
(290.2200) Scattering : Extinction
(290.4020) Scattering : Mie theory
(290.4210) Scattering : Multiple scattering
(300.1030) Spectroscopy : Absorption

ToC Category:
Scattering

History
Original Manuscript: January 12, 2007
Revised Manuscript: May 1, 2007
Manuscript Accepted: May 2, 2007
Published: August 24, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Stéphane Durant, Olivier Calvo-Perez, Nicolas Vukadinovic, and Jean-Jacques Greffet, "Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient," J. Opt. Soc. Am. A 24, 2953-2962 (2007)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-24-9-2953


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S.Chandrasekhar, Radiative Transfer (Dover, 1960).
  2. K.M.Case and P.F.Zweifel, Linear Transport Theory (Addison-Wesley, 1967).
  3. A.Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vols. I and II.
  4. L.Apresyan and Y.Kravtsov, Radiation Transfer, Statistical and Wave Aspects (Gordon and Breach, 1996).
  5. G.E.Thomas and K.Stamnes, Radiative Transfer in the Atmosphere and Ocean (Cambridge U. Press, 1999). [CrossRef]
  6. L.Tsang, J.A.Kong, and K. H. Ding, Scattering of Electromagnetic Waves, Theories and Applications (Wiley, 2000). [CrossRef]
  7. P. W. Anderson, "Absence of diffusion in certain random lattices," Phys. Rev. 10, 505-509 (1957).
  8. P. W. Anderson, "The question of classical localization: a theory of white paint?" Philos. Mag. B 52, 505-509 (1985). [CrossRef]
  9. S. Durant, O. Calvo-Perez, N. Vukadinovic, and J.-J. Greffet, "Light scattering by a random distribution of particles embedded in absorbing media: diagrammatic expansion of the extinction coefficient," J. Opt. Soc. Am. A 24, 2943-2952 (2007). [CrossRef]
  10. W. C. Mundy, J. A. Roux, and A. M. Smith, "Mie scattering by spheres in an absorbing medium," J. Opt. Soc. Am. 64, 1593-1597 (1974). [CrossRef]
  11. P. Chylek, "Light scattering by small particles in an absorbing medium," J. Opt. Soc. Am. 67, 561-563 (1977). [CrossRef]
  12. P. Bruscaglioni, A. Ismaelli, and G. Zaccanti, "A note on the definition of scattering cross sections and phase functions for spheres immersed in an absorbing medium," Waves Random Media 3, 147-156 (1993). [CrossRef]
  13. G. Fardella and S. Berthier, "Infrared emissivity of inhomogeneous media," Physica A 207, 346-351 (1994). [CrossRef]
  14. M. Quinten and J. Rostalski, "Lorenz-Mie theory for spheres immersed in an absorbing host medium," Part. Part. Syst. Charact. 13, 89-96 (1996). [CrossRef]
  15. A. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, "Optical extinction by spherical particles in an absorbing media: application to composite absorbing films," Eur. Phys. J. D 6, 365-373 (1999). [CrossRef]
  16. A. N. Lebedev and O. Stenzel, "Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver cluster in absorbing organic materials," Eur. Phys. J. D 7, 83-88 (1999). [CrossRef]
  17. Q. Fu and W. Sun, "Mie theory for light scattering by a spherical particle in an absorbing medium," Appl. Opt. 40, 1354-1361 (2001). [CrossRef]
  18. I. W. Sudiarta and P. Chylek, "Mie-scattering formalism for spherical particles embedded in an absorbing medium," J. Opt. Soc. Am. A 18, 1275-1278 (2001). [CrossRef]
  19. I. W. Sudiarta and P. Chylek, "Mie scattering efficiency of a large spherical particle embedded in an absorbing medium," J. Quant. Spectrosc. Radiat. Transf. 70, 709-714 (2001). [CrossRef]
  20. P. Yang, B.-C. Gao, W. J. Wiscombe, M. I. Mishchenko, S. E. Platnick, H.-L. Huang, B. A. Baum, Y. X. Hu, D. M. Winker, S.-C. Tsay, and S. K. Park, "Inherent and apparent scattering properties of coated or uncoated spheres embedded in an absorbing host medium," Appl. Opt. 41, 2740-2759 (2002). [CrossRef] [PubMed]
  21. G. Videen and W. Sun, "Yet another look at light scattering from particles in absorbing media," Appl. Opt. 42, 6724-6727 (2003). [CrossRef] [PubMed]
  22. C. F. Bohren and D. P. Gilra, "Extinction by a spherical particle in an absorbing medium," J. Colloid Interface Sci. 72, 215-221 (1979). [CrossRef]
  23. L. Foldy, "General theory of isotropic scattering by randomly distributed scatterers," Phys. Rev. 67, 107-119 (1945). [CrossRef]
  24. M. Lax, "Multiple scattering of waves," Rev. Mod. Phys. 23, 287-310 (1951). [CrossRef]
  25. J. B. Keller, "Stochastic equation and wave propagation in random media," Proc. Symp. Appl. Math. 13, 145-170 (1964).
  26. U.Frisch, "Wave propagation in random media," in Probabilistic Methods in Applied Mathematics, A.T.Bharuch-Reid, ed. (Academic, 1968), Vol. 1, pp. 75-198.
  27. V. Twersky, "On propagation in random media of discrete scatterers," Proc. Am. Math. Soc. 16, 84-116 (1964).
  28. P.Sheng, Introduction to Wave Scattering Localization and Mesoscopic Phenomena (Academic, 1995).
  29. L.Tsang and J.A.Kong, Scattering of Electromagnetic Waves, Volume II: Advanced Topics (Wiley, 2001). [CrossRef]
  30. S. Durant, "Propagation de la lumière en milieu aléatoire. Rôle de l'absorption, de la diffusion dépendante et du couplage surface-volume," Ph.D. thesis (Ecole Centrale Paris, 2003).
  31. V. A. Loiko, V. P. Dick, and A. P. Ivanov, "Features in coherent transmittance of a monolayer of particles," J. Opt. Soc. Am. A 17, 2040-2045 (2000). [CrossRef]
  32. C.F.Bohren and D.R.Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  33. V. A. Loiko and A. Miskevich, "The adding method for coherent transmittance and reflectance of a densely packed layer," J. Quant. Spectrosc. Radiat. Transf. 88, 125-138 (2004). [CrossRef]
  34. V. A. Loiko and A. Miskevich, "Light propagation through a monolayer of discrete scatterers: analysis of coherent transmission and reflection coefficients," Appl. Opt. 44, 3759-3768 (2005). [CrossRef] [PubMed]
  35. V. A. Loiko, V. P. Dick, and A. P. Ivanov, "Passage of light through a dispersion medium with a high concentration of discrete inhomogeneities: experiment," Appl. Opt. 38, 2640-2646 (1999). [CrossRef]
  36. Y. Kuga, F. T. Ulaby, T. F. Haddock, and R. D. DeRoo, "Millimeter-wave radar scattering from snow. 1. Radiative transfer model," Radio Sci. 26, 329-341 (1991). [CrossRef]
  37. L. Tsang, C. E. Mandt, and K. H. Ding, "Monte Carlo simulations of the extinction rate of dense media with randomly distributed dielectric spheres based on solution of Maxwell's equations," Opt. Lett. 17, 314-316 (1992). [CrossRef] [PubMed]
  38. L. M. Zurk, L. Tsang, K. H. Ding, and D. P. Winebrenner, "Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and nonclustered geometries," J. Opt. Soc. Am. A 12, 1772-1781 (1995). [CrossRef]
  39. K. Sarabandi and P. R. Siqueira, "Numerical scattering analysis for two-dimensional dense random media: characterization of effective permittivity," IEEE Trans. Antennas Propag. 45, 858-867 (1997). [CrossRef]
  40. L. Tsang, K. H. Ding, S. E. Shih, and J. A. Kong, "Scattering of electromagnetic waves from dense distribution of spheroidal particles based on Monte Carlo simulations," J. Opt. Soc. Am. A 15, 2660-2669 (1998). [CrossRef]
  41. P. R. Siqueira and K. Sarabandi, "Method of moments evaluation of the two-dimensional quasi-crystalline approximation," IEEE Trans. Antennas Propag. 44, 1067-1077 (2000). [CrossRef]
  42. P. R. Siqueira and K. Sarabandi, "T-matrix determination of effective permittivity for three-dimensional dense random media," IEEE Trans. Antennas Propag. 48, 317-327 (2000). [CrossRef]
  43. P. Mallet, C. A. Guerin, and A. Sentenac, "Maxwell-Garnett mixing rule in the presence of multiple scattering: derivation and accuracy," Phys. Rev. B 72, 014205 (2005). [CrossRef]
  44. C. A. Guerin, P. Mallet, and A. Sentenac, "Effective-medium theory for finite-size aggregates," J. Opt. Soc. Am. A 23, 349-358 (2006). [CrossRef]
  45. R. West, D. Gibbs, L. Tsang, and A. K. Fung, "Comparison of optical scattering experiments and the quasi-crystalline approximation for dense media," J. Opt. Soc. Am. A , 11, 1854-1858 (1994). [CrossRef]
  46. A. Nashashibi and K. Sarabandi, "Experimental characterization of the effective propagation constant of dense random media," IEEE Trans. Antennas Propag. 47, 1454-1462 (1999). [CrossRef]
  47. L. Hespel, S. Mainguy, and J. J. Greffet, "Theoretical and experimental investigation of the extinction in a dense distribution of particles: nonlocal effects," J. Opt. Soc. Am. A 18, 3072-3076 (2001). [CrossRef]
  48. A. Derode, V. Mamou, and A. Tourin, "Influence of correlations between scatterers on the attenuation of the coherent wave in a random media," Phys. Rev. E 74, 036606 (2006). [CrossRef]
  49. L. Dombrovsky, J. Randrianalisoa, and D. Baillis, "Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements," J. Opt. Soc. Am. A 23, 91-98 (2006). [CrossRef]
  50. J. Randrianalisoa, D. Baillis, and L. Pilon, "Improved inverse method for radiative characteristics of closed-cell absorbing porous media," J. Thermophys. Heat Transfer 20, 871-883 (2006). [CrossRef]
  51. JohnsonJ. H.Wang, Generalized Moment Methods in Electromagnetics: Formulation and Computer Solution of Integral Equations (Wiley-Interscience, 1991). [PubMed]
  52. L. Roux, P. Mareschal, N. Vukadinovic, J.-B. Thibaud, and J.-J. Greffet, "Scattering by a slab containing randomly located cylinders: comparison between radiative transfer and electromagnetic simulation," J. Opt. Soc. Am. A 18, 374-384 (2001). [CrossRef]
  53. L. Li, "New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997). [CrossRef]
  54. W. Wiscombe, "Improved Mie scattering algorithms," Appl. Opt. 19, 1505-1509 (1980). [CrossRef] [PubMed]
  55. J. K. Percus and G. J. Yevick, "Analysis of classical statistical mechanics by means of collective coordinates," Phys. Rev. 110, 1-13 (1958). [CrossRef]
  56. J. Randrianalisoa, D. Baillis, and L. Pilon, "Modeling radiation characteristics of semitransparent media containing bubbles or particles," J. Opt. Soc. Am. A 23, 1645-1656 (2006). [CrossRef]
  57. J. Yin and L. Pilon, "Efficiency factors and radiation characteristics of spherical scatterers in an absorbing medium," J. Opt. Soc. Am. A 23, 2784-2796 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited