OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Steven A. Burns
  • Vol. 24, Iss. 9 — Sep. 1, 2007
  • pp: 3017–3036

Wave propagation and resonance in four-layer systems for organic light-emitting diodes

Hyoung-In Lee  »View Author Affiliations

JOSA A, Vol. 24, Issue 9, pp. 3017-3036 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1736 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wave propagation and surface plasmon resonance are examined in four-layer optical systems in slab geometry for an OLED (organic light-emitting diode) with an embedded thin metal film. For this purpose, both leaky and bound modes are examined in all ranges of the propagation constant, which determines how surface and volume waves are allowed. Intensive parametric studies are performed on the thicknesses of the two embedded layers, along with the cathode condition and the metal’s material dispersion. As a way of interpreting the results, the direction of the depthwise wave propagation is examined in connection with possible excitations arising from light sources within the organic electroluminescence layer. Consequently, several new features are observed on the multiple-wave branches, including exchange of the phase speeds and depthwise standing waves for dissipationless systems. By the insertion of a thin metal film, the light extraction is found to be enhanced through leaky waves from the source layer out toward the viewer’s side.

© 2007 Optical Society of America

OCIS Codes
(230.3670) Optical devices : Light-emitting diodes
(240.6680) Optics at surfaces : Surface plasmons
(350.5500) Other areas of optics : Propagation

ToC Category:
Optics at Surfaces

Original Manuscript: January 19, 2007
Revised Manuscript: April 25, 2007
Manuscript Accepted: April 27, 2007
Published: August 31, 2007

Hyoung-In Lee, "Wave propagation and resonance in four-layer systems for organic light-emitting diodes," J. Opt. Soc. Am. A 24, 3017-3036 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. A. Neyts, "Simulation of light emission from thin-film microcavities," J. Opt. Soc. Am. A 15, 962-971 (1998). [CrossRef]
  2. J. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, "Electroluminescence emission pattern of organic light emitting diodes: implications for device efficiency calculations," J. Appl. Phys. 88, 1073-1081 (2000). [CrossRef]
  3. B. Ruhstaller, T. Beierlein, H. Riel, S. Karg, J. C. Scott, and W. Riess, "Simulating electronic and optical processes in multilayer in organic light-emitting devices," IEEE J. Sel. Top. Quantum Electron. 9, 723-731 (2003). [CrossRef]
  4. Y. R. Do, Y. Kim, Y. Song, and Y. Lee, "Enhanced light extraction efficiency from organic light-emitting diodes by insertion of a two-dimensional photonic crystal structure," J. Appl. Phys. 96, 7629-7636 (2004). [CrossRef]
  5. W. Riess, T. A. Beierlein, and H. Riel, "Optimizing OLED structures for a-Si display applications via combinatorial methods and enhanced outcoupling," Phys. Status Solidi 201, 1360-1371 (2004). [CrossRef]
  6. A. Chutinan, K. Ishihara, T. Asano, M. Fujita, and S. Noda, "Theoretical analysis on light-extraction efficiency of organic light-emitting diodes using FDTD and mode-expansion methods," Org. Electron. 6, 3-9 (2005). [CrossRef]
  7. H. Chen, J. Lee, C. Shiau, C. Yang, and Y. Kiang, "Electromagnetic modeling of organic light-emitting devices," J. Lightwave Technol. 24, 2450-2457 (2006). [CrossRef]
  8. M. Fujita, K. Ishihara, T. Ueno, T. Asano, S. Noda, H. Ohata, T. Tsuji, H. Nakada, and N. Shimoji, "Optical and clectrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers," Jpn. J. Appl. Phys., Part 1 44, 3669-3677 (2006). [CrossRef]
  9. B. J. Chen, X. W. Sun, and S. C. Tan, "Transparent organic light-emitting devices with LiF/Mg:Ag cathode," Opt. Express 13, 937 (2005). [CrossRef] [PubMed]
  10. G. Z. Ran, G. L. Ma, Y. H. Xu, L. Dai, and G. G. Qin, "Light extraction efficiency of a top-emission organic light-emitting diode with an Yb/Au double-layer cathode and an opaque Si anode," Appl. Opt. 45, 5871-5876 (2006). [CrossRef] [PubMed]
  11. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, "The role of surface plasmons in organic light-emitting diodes," IEEE J. Sel. Top. Quantum Electron. 8, 378-386 (2002). [CrossRef]
  12. S. Wedge and W. L. Barnes, "Surface plasmon-polariton mediated light emission through thin metal films," Opt. Express 12, 3673-3685 (2004). [CrossRef] [PubMed]
  13. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings, Vol. 3 of Springer Tracts in Modern Physics (Springer-Verlag, 1988).
  14. F. Pincemin, A. A. Maradudin, A. D. Boardman, and J.-J. Greffet, "Scattering of a surface plasmon polariton by a surface defect," Phys. Rev. B 50, 15261-15275 (1994). [CrossRef]
  15. F. Kliewer and J. R. Fuchs, "Collective electronic motion in a metallic slab," Phys. Rev. 153, 498-512 (1967). [CrossRef]
  16. G. I. Stegeman, J. J. Burke, and D. G. Hall, "Surface-polariton-like waves guided by thin, dissipative metal films," Opt. Lett. 8, 383-385 (1983). [CrossRef] [PubMed]
  17. G. I. Stegeman, A. A. Maradudin, T. P. Shen, and R. F. Wallis, "Refraction of a surface polariton by a semi-infinite film on a metal," Phys. Rev. B 29, 6530-6539 (1984). [CrossRef]
  18. J. J. Burke, G. I. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, dissipative metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  19. F. A. Burton and S. A. Cassidy, "A complete description of the dispersion relation for thin metalfilm plason-polaritons," J. Lightwave Technol. 8, 1843-1849 (1990). [CrossRef]
  20. F. Yang, J. R. Sambles, and G. W. Bradberry, "Long-range surface modes supported by thin films," Phys. Rev. B 44, 5855-5872 (1991). [CrossRef]
  21. T. Takahara, Y. Fukasawa, and T. Konayashi, "Excitation of two-dimensional optical waves by electric currents in thin metal-gap structures," J. Korean Phys. Soc. 47, S43-S47 (2005).
  22. M. Karppinen, R. Charbonneau, and P. Berini, "Attenuated total reflection modulator based on surface plasmon excitation," Proc. SPIE 4595, 259-267 (2001). [CrossRef]
  23. J. Stiens, R. Vounckx, I. Veretennicoff, A. Voronko, and G. Shkerdin, "Slab plasmon polaritons and waveguide modes in four-layer resonant semiconductor waveguides," J. Appl. Phys. 81, 1-10 (1997). [CrossRef]
  24. Y. Li and J. W. Y. Lit, "General formulas for the guiding properties of a multilayer slab waveguide," J. Opt. Soc. Am. A 4, 671-677 (1987). [CrossRef]
  25. R. Zia, M. D. Selker, and M. L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phys. Rev. B 71, 165431 (2005). [CrossRef]
  26. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structure," Phys. Rev. B 61, 10484-10503 (2000). [CrossRef]
  27. I. Breukelaar and P. Berini, "Long-range surface plasmon polariton mode cutoff and radiation in slab waveguide," J. Opt. Soc. Am. A 23, 1971-1977 (2006). [CrossRef]
  28. R. E. Smith, S. N. Houde-Walter, and G. W. Forbes, "Mode determination for planar waveguides using the four-sheeted dispersion relation," IEEE J. Quantum Electron. 28, 1520-1526 (1992). [CrossRef]
  29. R. E. Smith and S. N. Houde-Walter, "Leaky guiding in nontransparent waveguides," J. Opt. Soc. Am. A 12, 715-724 (1995). [CrossRef]
  30. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  31. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, "An analytic model for the optical properties of gold," J. Chem. Phys. 125, 164705 (2006). [CrossRef] [PubMed]
  32. H. I. Lee, "Wave propagation and resonance in four-layer systems for waveguides," in preparation.
  33. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited