OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 1 — Jan. 1, 2008
  • pp: 250–261

Single dispersive gradient-index profile for the aging human lens

José Antonio Díaz, Carles Pizarro, and Josep Arasa  »View Author Affiliations


JOSA A, Vol. 25, Issue 1, pp. 250-261 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000250


View Full Text Article

Enhanced HTML    Acrobat PDF (766 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We provide a single gradient-index (GRIN) profile for the crystalline lens in an updated age-dependent emmetropic-eye model. The parameters defining the GRIN profile include their variation with age and the dispersion of the refractive index in order to account for the increase in the positive-wave spherical aberration, for the constant chromatic difference in the refraction of the human eye, as well as for the decrease in the retinal-image quality with aging. In accounting for these ocular properties, the results show that first, the value of the dispersion parameters are invariant with age. Second, those parameters defining the distribution of the lens index cause the lens-center-index value to decrease slightly, and its position along the lens axis changes with age. Furthermore, these findings are in agreement with the lens paradox.

© 2008 Optical Society of America

OCIS Codes
(110.2760) Imaging systems : Gradient-index lenses
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Vision, color, and visual optics

History
Original Manuscript: May 8, 2007
Revised Manuscript: October 23, 2007
Manuscript Accepted: November 4, 2007
Published: December 21, 2007

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

Citation
José Antonio Díaz, Carles Pizarro, and Josep Arasa, "Single dispersive gradient-index profile for the aging human lens," J. Opt. Soc. Am. A 25, 250-261 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-1-250


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Matthiessen, "Untersuchungen über den aplanatismus und die periscopie der krystalllinsen in den augen der fische," Pfluegers Arch. Gesamte Physiol. Menschen Tiere 231, 287-307 (1880). [CrossRef]
  2. L. Matthiessen, "Untersuchungen über den aplanatismus und die periscopie der krystalllinsen in den augen der fische," Pfluegers Arch. Gesamte Physiol. Menschen Tiere 27, 510-523 (1882). [CrossRef]
  3. A. Gullstrand, Hemholtz's Handbuch der Physiologischen Optik, 3rd. ed., English translation edited by J.P.Southall (Optical Society of America, 1924), Vol. 1, Appendix II, pp. 301-358.
  4. J. W. Blaker, "Toward an adaptative model of the human eye," J. Opt. Soc. Am. 70, 220-283 (1980). [CrossRef] [PubMed]
  5. J. W. Blaker, "A comprehensive optical model of the aging, accommodating adult eye," in Techical Digest on Ophthalmic and Visual Optics, Vol. 2 of 1991 OSA Technical Digest Series (Optical Society of America, 1991), p. 2831.
  6. D. A. Atchison and G. Smith, "Continuous gradient index and shell models of the human lens," Vision Res. 35, 2529-2538 (1995). [CrossRef] [PubMed]
  7. H. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997). [CrossRef]
  8. H. T. Kasprzak, "New approximation for the whole profile of the human crystalline lens," Ophthalmic Physiol. Opt. 20, 31-43 (2000). [CrossRef] [PubMed]
  9. D. A. Atchison, "Optical models for human myopic eyes," Vision Res. 46, 2236-2250 (2006). [CrossRef] [PubMed]
  10. B. K. Pierscionek, "Refractive index contours in the human lens," Exp. Eye Res. 64, 887-893 (1997). [CrossRef] [PubMed]
  11. B. K. Pierscionek, "Surface refractive of the eye lens determined with an optical fiber sensor," J. Opt. Soc. Am. A 10, 1867-1871 (1993). [CrossRef]
  12. B. K. Pierscionek, D. Y. C. Chan, J. P. Ennis, G. Smith, and R. C. Augusteyn, "Nondestructive method of constructing three dimensional gradient index models for crystalline lenses: 1. theory and experiment," Am. J. Optom. Physiol. Opt. 65, 481-491 (1988). [PubMed]
  13. B. K. Pierscionek, "Refractive index of the human lens surface measured with an optic fiber sensor," Ophthalmic Res. 26, 32-35 (1994). [CrossRef] [PubMed]
  14. B. K. Pierscionek and D. Y. C. Chan, "Refractive index gradient of human lenses," Optom. Vision Sci. 66, 822-829 (1989). [CrossRef]
  15. S. Nakao, S. Fujimoto, R. Nagata, and K. Iwata, "Model of the refractive-index distribution in the rabbit crystalline lens," J. Opt. Soc. Am. 58, 1125-1130 (1968). [CrossRef] [PubMed]
  16. P. P. Fagerholm, B. T. Philipson, and B. Lindström, "Normal human lens, the distribution of protein," Exp. Eye Res. 33, 615-620 (1981). [CrossRef] [PubMed]
  17. E. Acosta, R. Flores, D. Vazquez, S. Rios, L. F. Garner, and G. Smith, "Tomographic method for measurement of the refractive index profile of optical fibre forms and rod GRIN lenses," Jpn. J. Appl. Phys., Part 1 41, 4821-4824 (2002). [CrossRef]
  18. E. Acosta, D. Vazquez, R. Flores, L. F. Garner, and G. Smith, "Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. The spherical fish lens," J. Opt. Soc. Am. A 22, 424-433 (2005). [CrossRef]
  19. B. A. Moffat, D. A. Atchison, and J. M. Pope, "Age-related changes in the refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro," Vision Res. 42, 1683-1693 (2002). [CrossRef] [PubMed]
  20. E. Acosta, D. Vazquez, R. Flores, L. F. Garner, and G. Smith, "Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens," J. Opt. Soc. Am. A 23, 2551-2565 (2006). [CrossRef]
  21. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, "Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI)," Vision Res. 45, 2352-2366 (2005). [CrossRef] [PubMed]
  22. O. Pomerantzeff, M. Pankratov, G. J. Wang, and P. Dufault, "Wide-angle optical mode of the eye," Am. J. Optom. Physiol. Opt. 61, 166-176 (1984). [PubMed]
  23. O. Pomerantzeff, P. Dufault, and R. Goldstein, "Wide-angle model of the eye," in Advances in Diagnostic Visual Optics, Springer Series in Optical Sciences, G.Breinin and I.Siegel, eds. (Springer-Verlag, 1983), pp. 12-21.
  24. O. Pomerantzeff, H. Fish, J. Govingnon, and C. L. Schepens, "Wide-angle optical model of the human eye," Ann. Ophthalmol. 3, 815-819 (1971). [PubMed]
  25. E. H. Roth and G. Kluxen, "In vivo measurements of the distribution of the refractive index of the human lens with a Sheimpflug procedure of the anterior segment of the eye and a He-Ne laser beam," Fortschr. Ophthalmol. 87, 312-316 (1990). [PubMed]
  26. J. A. Díaz, R. G. Anera, J. R. Jiménez, and L. J. del Barco, "Optimum corneal asphericity of myopic eyes for refractive surgery," J. Mod. Opt. 50, 1903-1915 (2003). [CrossRef]
  27. J. A. Díaz, J. A. Martínez, R. G. Anera, and J. R. Jiménez, "Permissible lateral misaligments in corneal ablation for myopic eyes," J. Opt. A, Pure Appl. Opt. 7, 364-367 (2005). [CrossRef]
  28. D. A. Atchison and W. N. Charman, "Influence of reference plane and direction of measurement on eye aberration measurement," J. Opt. Soc. Am. A 22, 2589-2597 (2005). [CrossRef]
  29. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Nooren, and N. E. S. Norby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002). [PubMed]
  30. P. Piers, N. E. S. Norby, and U. Mester, "Eye models for the prediction of contrast vision in patients with new intraocular lens designs," Opt. Lett. 29, 733-735 (2004). [CrossRef] [PubMed]
  31. J. A. Díaz, M. Irlbauer, and J. A. Martínez, "Diffractive-refractive hybrid doublet to achromatize the human eye," J. Mod. Opt. 51, 2223-2234 (2004). [CrossRef]
  32. M. F. Deering, "A photon accurate model of the human eye," ACM Trans. Graphics 24, 649-658 (2005). [CrossRef]
  33. Y. Benny, S. Manzanera, P. Prieto, E. Ribak, and P. Artal, "Wide-angle chromatic aberration corrector for the human eye," J. Opt. Soc. Am. A 24, 1538-1544 (2007). [CrossRef]
  34. A. Guirao, C. González, M. Redondo, E. Geraghty, N. E. S. Norby, and P. Artal, "Average optical performance of the human eye as a function of age in a normal population," Invest. Ophthalmol. Visual Sci. 40, 210-213 (1999).
  35. J. S. McLellan, S. Marcos, and S. A. Burns, "Age-related changes in monochromatic wave aberrations of the human eye," Invest. Ophthalmol. Visual Sci. 42, 1390-1395 (2001).
  36. T. Fujikado, T. Kuroda, S. Nimomiya, N. Maeda, Y. Tanao, Y. Hirohara, and T. Mihashi, "Age-related changes of ocular and corneal aberrations," Am. J. Ophthalmol. 183, 143-146 (2002).
  37. D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christiensen, and M. D. Waterworth, "Measurements of monochromatic ocular aberrations of human eyes as a fuction of accommodation by the Howland aberroscope technique," Vision Res. 35, 313-323 (1995). [CrossRef] [PubMed]
  38. J. C. He, S. A. Burns, and S. Marcos, "Monochromatic aberrations in the accommodated human eye," Vision Res. 40, 41-48 (2000). [CrossRef] [PubMed]
  39. H. Cheng, J. K. Barnett, A. S. Vilipuru, J. D. Marsack, S. Kasthuriragan, R. A. Applegate, and A. Roorda, "A population study on changes in wave aberrations with accommodation," J. Vision 16, 272-280 (2004).
  40. A. Popiolek-Masajada and H. Kasprzak, "Model of the optical system of the human eye during accommodation," Ophthalmic Physiol. Opt. 22, 201-208 (2002). [CrossRef] [PubMed]
  41. Y. Huang and D. T. Moore, "Human eye modelling using a single equation of gradient index crystalline lens for relaxed and accommodated states," in International Optical Design Conference, G.G.Gregory, J.M.Howard, and R.J.Koshel, eds. (SPIE, 2006), Vol. 6342, pp. 6342D1-6342D9.
  42. P. Artal, M. Ferro, I. Miranda, and R. Navarro, "Effects of aging in retinal image quality," J. Opt. Soc. Am. A 10, 1656-1662 (1993). [CrossRef] [PubMed]
  43. R. I. Calver, M. J. Cox, and D. B. Elliot, "Effect of aging on the monochromatic aberrations of the human eye," J. Opt. Soc. Am. A 16, 2069-2078 (1999). [CrossRef]
  44. G. Smith, M. Cox, R. Calver, and L. Garner, "The spherical aberration of the crystalline lens of the human eye," Vision Res. 41, 235-243 (2001). [CrossRef] [PubMed]
  45. M. Dubbleman, G. L. van der Heijde, and H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci. 78, 411-416 (2001). [CrossRef]
  46. M. Dubbleman, G. L. van der Heijde, and H. A. Weeber, "Change in the shape of the aging human crystalline lens with accommodation," Vision Res. 45, 117-132 (2005). [CrossRef]
  47. M. Dubbleman, G. L. van der Heijde, H. A. Weeber, and G. Vrensen, "Change in the internal structure of the human crystalline lens with age and accommodation," Vision Res. 43, 2363-2375 (2003). [CrossRef]
  48. M. Dubbleman, V. A. D. P. Sicam, and G. L. van der Heijde, "The shape of the anterior and posterior surface of the aging human cornea," Vision Res. 46, 993-1001 (2006).
  49. M. Dubbleman and G. L. van der Heijde, "The shape of the human lens: curvature, equivalent refractive index and the lens paradox," Vision Res. 41, 1867-1877 (2001). [CrossRef]
  50. G. Smith, D. A. Atchison, and B. K. Pierscionek, "Modeling the power of the aging human eye," J. Opt. Soc. Am. A 9, 2111-2117 (1992). [CrossRef] [PubMed]
  51. R. P. Hemenger, L. F. Garner, and S. C. Ooi, "Change with age of the refractive index gradient of the human ocular lens," Invest. Ophthalmol. Visual Sci. 36, 703-707 (1995).
  52. G. Smith, B. K. Pierscionek, and D. A. Atchison, "The optical modeling of the human lens," Ophthalmic Physiol. Opt. 11, 359-369 (1991). [CrossRef] [PubMed]
  53. A. Glasser and M. C. W. Campbell, "Presbyopia and the optical changes in the human crystalline lens with age," Vision Res. 38, 209-229 (1998). [CrossRef] [PubMed]
  54. B. A. Moffat, D. A. Atchsion, and J. M. Pope, "Explanation of the lens paradox," Optom. Vision Sci. 79, 148-150 (2002). [CrossRef]
  55. D. A. Atchison and G. Smith, "Chromatic dispersion of the ocular media of human eyes," J. Opt. Soc. Am. A 22, 29-37 (2005). [CrossRef]
  56. R. E. Bedford and G. Wyszecki, "Axial chromatic aberration of the human eye," J. Opt. Soc. Am. 37, 564-565 (1947).
  57. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans," Appl. Opt. 31, 3594-3600 (1992). [CrossRef] [PubMed]
  58. A. Morrell, H. D. Whitefoot, and W. N. Charman, "Ocular chromatic aberration and age," Ophthalmic Physiol. Opt. 11, 385-390 (1991). [CrossRef] [PubMed]
  59. P. A. Howarth, X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, "Does the chromatic aberration of the eye vary with age?" J. Opt. Soc. Am. A 5, 2087-2092 (1988). [CrossRef] [PubMed]
  60. Y. Chang, H.-M. Wu, and Y.-F. Lin, "The axial misalignment between ocular lens and cornea observed by MRI(I)--at fixed accommodative state," Vision Res. 47, 71-84 (2007). [CrossRef]
  61. J. Tabernero, A. Benito, V. Nourrit, and P. Artal, "Instrument for measuring the misalignment of ocular surfaces," Opt. Express 14, 10945-10956 (2006). [CrossRef] [PubMed]
  62. D. A. Atchison, N. Pritchard, K. L. Schmid, D. H. Scott, C. Jones, and J. Pope, "Shape of the retinal surface in emmetropia and myopia," Invest. Ophthalmol. Visual Sci. 46, 2698-2707 (2005). [CrossRef]
  63. D. Atchison and G. Smith, Optics of the Human Eye (Butterwoth-Heinemann, 2000).
  64. A. C. Kooijman, "Light distribution on the retina of a wide-angle theoretical eye," J. Opt. Soc. Am. 73, 1544-1550 (1983). [CrossRef] [PubMed]
  65. R. Navarro, J. Santamaría, and J. Bescós, "Accommodation-dependent model of the human eye with aspherics," J. Opt. Soc. Am. A 2, 1273-1281 (1985). [CrossRef] [PubMed]
  66. I. Escudero-Sanz and R. Navarro, "Off-axis aberrations of a wide-angle schematic eye," J. Opt. Soc. Am. A 16, 1881-1891 (1999). [CrossRef]
  67. Y. Yang, K. Thompson, and S. A. Burns, "Pupil location under mesopic, phottopic, and pharmacologically dilated conditions," Invest. Ophthalmol. Visual Sci. 43, 2508-2512 (2002).
  68. P. Rosales, M. Dubbleman, S. Marcos, and G. van der Heijde, "Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging," J. Vision 6, 1057-1067 (2006). [CrossRef]
  69. W. J. Tropf, M. E. Thomas, and T. J. Harris, "Optical properties of crystal and glasses," in Handbook of Optics (Optical Society of America, 1995), Vol. 2, pp. 33.25-33.28.
  70. J. P. Carroll, "Apodization model of the Stiles-Crawford effect," J. Opt. Soc. Am. 70, 1155-1156 (1980). [CrossRef] [PubMed]
  71. D. A. Atchison, A. Joblin, and G. Smith, "Influence of Stiles-Crawford effect apodization on spatial visual performance," J. Opt. Soc. Am. A 15, 2545-2551 (1998). [CrossRef]
  72. D. A. Atchison, D. H. Scott, A. Joblin, and G. Smith, "Influence of Stiles-Crawford effect apodization on spatial visual performance with decentered pupils," J. Opt. Soc. Am. A 18, 1201-1211 (2001). [CrossRef]
  73. S. A. Burns and S. Marcos, "Measurement of the image quality of the eye with a spatially resolved refractometer," in Customized Corneal Ablations (Slack, 2001), pp. 201-209.
  74. G. Wyszecki and W. S. Stiles, Color Science: Formula and Quantitative Data (Wiley, 1982).
  75. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, and V. S. T. Members, "Standards for reporting the optical aberrations of eyes," Opt. Photonics News 35, 232-244 (2000).
  76. R. R. Shannon, The Art and Science of Optical Design (Cambridge U. Press, 1997).
  77. R. E. Fisher and B. Tadic-Galeb, Optical System Design (McGraw-Hill, 2000).
  78. ZEMAX Development Corporation, ZEMAX Optical Design Program: User's Guide, Version 10 (Zemax Software Development, 2004).
  79. D. A. Atchison, "Recent advances in measurement of monochromatic aberrations of human eyes," Clin. Exp. Optom. 88, 5-27 (2005). [CrossRef] [PubMed]
  80. P. Artal and A. Guirao, "Contribution of cornea and lens to the aberrations of the human eye," Opt. Lett. 23, 1713-1715 (1998). [CrossRef]
  81. P. Artal, E. Berrio, and A. Guirao, "Contribution of the cornea and internal surfaces to the change of ocular aberrations with age," J. Opt. Soc. Am. A 19, 137-143 (2002). [CrossRef]
  82. P. Artal, A. Guirao, E. Berrio, and D. Williams, "Compensation of corneal aberrations by the internal optics in the human eye," J. Vision 1, 1-8 (2001). [CrossRef]
  83. J. Kelly, T. Mihashi, and H. Howland, "Compensation of corneal horizontal/vertical astigmatism, lateral coma and spherical aberration by internal optics of the eye," J. Vision 4, 262-271 (2004). [CrossRef]
  84. P. Artal, A. Benito, and J. Tabernero, "The human eye is an example of robust optical design," J. Vision 4, 1-7 (2006). [CrossRef]
  85. J. Tabernero, A. Benito, E. Alarcón, and P. Artal, "Mechanism of compensation of aberrations in the human eye," J. Opt. Soc. Am. A 24, 3274-3283 (2007). [CrossRef]
  86. M. V. Pérez, C. Bao, M. T. Flores-Arias, M. A. Rama, and C. Gómez-Reino, "Description of gradient-index crystalline lens by a first order optical system," J. Opt. A, Pure Appl. Opt. 7, 103-110 (2005). [CrossRef]
  87. M. V. Pérez, C. Bao, M. T. Flores-Arias, M. Rama, and C. Gómez-Reino, "Gradient parameter and axial and field rays in the gradient-index crystalline lens model," J. Opt. A, Pure Appl. Opt. 5, S293-S297 (2003). [CrossRef]
  88. F. Díaz-Douton, A. Benito, J. Pujol, M. Arjona, J. Guillen, and P. Artal, "Comparison of the retinal image quality with a Hartmann comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Visual Sci. 47, 1710-1716 (2006). [CrossRef]
  89. P. Rodríguez and R. Navarro, "Double-pass versus aberrometric modulation transfer function in green light," J. Biomed. Opt. 12, 0440181 (2007). [CrossRef]
  90. R. P. Hemenger, "Intraocular light scattering in normal vision loss with age," Appl. Opt. 23, 1972-1974 (1984). [CrossRef] [PubMed]
  91. M. C. Dunne, J. M. Royston, and D. A. Barnes, "Posterior corneal surface toricity and total corneal astigmatism," Optom. Vision Sci. 68, 708-710 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited