OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 2415–2426

Modal method for classical diffraction by slanted lamellar gratings

Sam Campbell, Lindsay C. Botten, Ross C. McPhedran, and C. Martijn de Sterke  »View Author Affiliations


JOSA A, Vol. 25, Issue 10, pp. 2415-2426 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002415


View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider lamellar gratings made of dielectric or lossy materials used in classical diffraction mounts. We show how the modal diffraction formulation may be generalized to deal with slanted lamellar gratings and illustrate the accuracy and versatility of the new method through study of highly slanted gratings in a homogenization limit. We also comment on the completeness of the eigenmode basis and present tests enabling this completeness to be verified numerically.

© 2008 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 3, 2008
Manuscript Accepted: July 20, 2008
Published: September 8, 2008

Citation
Sam Campbell, Lindsay C. Botten, Ross C. McPhedran, and C. Martijn de Sterke, "Modal method for classical diffraction by slanted lamellar gratings," J. Opt. Soc. Am. A 25, 2415-2426 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-10-2415


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. Davidson, “A modal model for diffraction gratings,” J. Mod. Opt. 50, 1817-1834 (2003).
  2. E. Popov, M. Neviere, B. Gralak, and G. Tayeb, “Staircase approximation validity for arbitrary-shaped gratings,” J. Opt. Soc. Am. A 19, 33-42 (2002). [CrossRef]
  3. N. Bonod, E. Popov, L. Li, and B. Chernov, “Unidirectional excitation of surface plasmons by slanted gratings,” Opt. Express 15, 11427-11432 (2007). [CrossRef] [PubMed]
  4. J. Chandezon, M. T. Dupuis, G. Cornet, and D. Maystre, “Multicoated gratings: a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839-846 (1982). [CrossRef]
  5. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818 (1981). [CrossRef]
  6. L. Li, “Oblique-coordinate system-based Chandezon method for modeling one-dimensional periodic, multilayer, inhomogeneous, anisotropic gratings,” J. Opt. Soc. Am. A 16, 2521-2531 (1999). [CrossRef]
  7. T. W. Preist, J. B. Harris, N. P. Wanstall, and J. R. Sambles, “Optical response of blazed and overhanging gratings using oblique Chandezon transformations,” J. Mod. Opt. 44, 1073-1080 (1997). [CrossRef]
  8. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981). [CrossRef]
  9. P. Sheng, R. S. Stepleman, and P. N. Sanda, “Exact eigenfunctions for square wave gratings--application to diffraction and surface-plasmon calculations,” Phys. Rev. B 26, 2907-2916 (1982). [CrossRef]
  10. J. Y. Suratteau, M. Cadilhac, and R. Petit, “On the numerical study of deep dielectric lamellar gratings,” J. Opt. (Paris) 14, 273-288 (1983). [CrossRef]
  11. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087-1102 (1981). [CrossRef]
  12. L. C. Botten, M. S. Craig, R. C. McPhedran, and J. L. Adams, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103-1106 (1981). [CrossRef]
  13. A. Roberts and R. C. McPhedran, “Power losses in highly conducting lamellar gratings,” J. Mod. Opt. 34, 511-538 (1987). [CrossRef]
  14. L. C. Botten and R. C. McPhedran, “Completeness and modal expansion methods in diffraction theory,” Opt. Acta 32, 1479-1488 (1985). [CrossRef]
  15. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553-573 (1993). [CrossRef]
  16. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 16, 2581-2591 (1993). [CrossRef]
  17. J. M. Miller, J. Turunen, E. Noponen, A. Vasara, and M. R. Taghizadeh, “Rigorous modal theory for multiply grooved lamellar gratings,” Opt. Commun. 111, 526-535 (1994). [CrossRef]
  18. S. Kaushik, “Vector Fresnel equations and Airy formula for one-dimensional multilayer and surface relief gratings,” J. Opt. Soc. Am. A 14, 596-609 (1997). [CrossRef]
  19. S. Campbell, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, “Fresnel formulation for multi-element lamellar diffraction gratings in conical mountings,” Waves Random Complex Media 17, 455-475 (2007). [CrossRef]
  20. B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for the problem of extraordinary light transmission through subwavelength holes,” EPL 80, 24002 (2007). [CrossRef]
  21. B. Sturman, E. Podivilov, and M. Gorkunov, “Eigenmodes for metal-dielectric light-transmitting nanostructures,” Phys. Rev. B 76, 125104 (2007). [CrossRef]
  22. G. Granet, J. Chandezon, and O. Coudert, “Extension of the C method to nonhomogeneous media: application to nonhomogeneous layers with parallel modulated faces and to inclined lamellar gratings,” J. Opt. Soc. Am. A 14, 1576-1582 (1997). [CrossRef]
  23. β2 here is the square of the modes propagation constant, which we denote μ2.
  24. D. J. Bergman, “The dielectric constant of a composite material--A problem in classical physics,” Phys. Rep. 43, 377-407 (1978). [CrossRef]
  25. G. W. Milton, “Bounds using the analytic method,” in The Theory of Composites (Cambridge U. Press, 2002), pp. 569-589. [CrossRef]
  26. L. C. Botten, R. C. McPhedran, and G. W. Milton, “Perfectly Conducting Lamellar Gratings: Babinets Principle and Circuit Models,” J. Mod. Opt. 42, 2453-2473 (1995). [CrossRef]
  27. L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke, and R. C. McPhedran, “Bloch mode scattering matrix methods for modeling extended PC structures,” Phys. Rev. E 70, 056606 (2004). [CrossRef]
  28. H. Hoffman, “Relative convergence in mode-matching solutions of mircrostrip problems,” Electron. Lett. 10, 126-127 (1974). [CrossRef]
  29. T. Itoh and R. Mittra, “Relative convergence phenomenon arising in the solution of diffraction from strip grating on a dielectric slab,” Proc. IEEE 59, 1363-1365 (1971). [CrossRef]
  30. J. P. Plumey, B. Guizal, and J. Chandezon, “Coordinate transformation method as applied to asymmetric gratings with vertical facets,” J. Opt. Soc. Am. A 14, 610-617 (1997). [CrossRef]
  31. O. Toader and S. John, “Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,” Science 292, 1133-1135 (2001). [CrossRef] [PubMed]
  32. O. Toader and S. John, “Square spiral photonic crystals: Robust architecture for microfabrication of materials with large three-dimensional photonic band gaps,” Phys. Rev. E 66, 016610 (2002). [CrossRef]
  33. D. Ye, Z. Yang, A. Chang, J. Bur, S. Lin, T. Lu, R. Wang, and S. John, “Experimental realization of a well-controlled 3D silicon spiral photonic crystal,” J. Phys. D 40, 2624-2628 (2007). [CrossRef]
  34. A. Dirks and H. Leamy, “Columnar microstructure in vapor-deposited thin-films,” Thin Solid Films 47, 219-233 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited