OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 2436–2443

Deconvolution reconstruction of full-view and limited-view photoacoustic tomography: a simulation study

Chi Zhang and Yuanyuan Wang  »View Author Affiliations

JOSA A, Vol. 25, Issue 10, pp. 2436-2443 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (467 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although many algorithms are available for full-view photoacoustic tomography (PAT), no exact and stable algorithm for limited-view PAT has been proposed. In this paper the deconvolution reconstruction (DR) algorithm is proposed for both full-view and limited-view PAT. In the DR algorithm, first a new function is constructed from detected photoacoustic signals and approximately simplified, and then the tissue’s electromagnetic absorption is derived from this function on the basis of Fourier-based deconvolution. Computer simulations are carried out to compare the DR algorithm with two popular PAT algorithms, the time-domain reconstruction (TDR) and the filtered back projection (FBP). Although the error of the DR algorithm increases with the size of the detected object, it is shown that the DR algorithm has good precision and strong robustness to noise in the full-view PAT, nearly equivalent to the TDR and FBP. Yet the DR algorithm is more than ten times faster in computation speed. In the limited-view PAT, the DR is superior to the TDR and FBP in terms of both accuracy and robustness to noise.

© 2008 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: March 4, 2008
Revised Manuscript: July 6, 2008
Manuscript Accepted: July 15, 2008
Published: September 11, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Chi Zhang and Yuanyuan Wang, "Deconvolution reconstruction of full-view and limited-view photoacoustic tomography: a simulation study," J. Opt. Soc. Am. A 25, 2436-2443 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging,” Nat. Biotechnol. 24, 848-851 (2006). [CrossRef] [PubMed]
  2. K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31, 2453-2455 (2006). [CrossRef] [PubMed]
  3. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging 24, 436-440 (2005). [CrossRef] [PubMed]
  4. K. Maslov, G. Stoica, and L. V. Wang, “In vivo dark-field reflection-mode photoacoustic microscopy,” Opt. Lett. 30, 625-627 (2005). [CrossRef] [PubMed]
  5. C.-W. Wei, S.-W. Huang, C.-R. C. Wang, and P.-C. Li, “Photoacoustic flow measurements based on wash-in analysis of gold nanorods,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1131-1141 (2007). [CrossRef] [PubMed]
  6. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-1-22 (2006). [CrossRef]
  7. A. A. Karabutov, V. G. Andreev, B. Bell, R. D. Fleming, Z. Gatalica, M. Motamedi, E. V. Savateeva, H. Singh, S. V. Solomatin, S. L. Thomsen, P. M. Henrichs, and A. A. Oraevsky, “Optoacoustic images of early cancer in forward and backward modes,” Proc. SPIE 4434, 13-27 (2001). [CrossRef]
  8. R. G. M. Kolkman, E. Hondebrink, W. Steenbergen, and F. F. M. Mul, “In vivo photoacoustic imaging of blood vessels using an extreme-narrow aperture sensor,” IEEE J. Sel. Top. Quantum Electron. 9, 343-346 (2003). [CrossRef]
  9. R. Zemp, R. Bitton, M.-L. Li, K. K. Shung, and L. V. Wang, “Imaging microvascular dynamics noninvasively with realtime photoacoustic microscopy,” Proc. SPIE 6430, 643015 1-8 (2007).
  10. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 7, 803-806 (2003). [CrossRef]
  11. R. A. Kruger, P. Liu, Y. Fang, and C. R. Appledom, “Photoacoustic ultrasound (PAUS)-reconstruction tomography,” Med. Phys. 22, 1605-1609 (1995). [CrossRef] [PubMed]
  12. M. Xu and L. V. Wang, “Time-domain reconstruction for thermoacoustic tomography in a spherical geometry,” IEEE Trans. Med. Imaging 21, 814-822 (2002). [CrossRef] [PubMed]
  13. Y. Xu, D. Feng, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-I: planar geometry,” IEEE Trans. Med. Imaging 21, 823-828 (2002). [CrossRef] [PubMed]
  14. Y. Xu, M. Xu, and L. V. Wang, “Exact frequency-domain reconstruction for thermoacoustic tomography-II: cylindrical geometry,” IEEE Trans. Med. Imaging 21, 829-833 (2002). [CrossRef] [PubMed]
  15. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed tomography,” Phys. Rev. E 71, 016706-1-7 (2005). [CrossRef]
  16. K. P. Kostli and P. C. Beard, “Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response,” Appl. Opt. 42, 1899-1908 (2003). [CrossRef] [PubMed]
  17. M. Haltmeier, T. Schuster, and O. Scherzer, “Filtered backprojection for thermoacoustic computed tomography in spherical geometry,” Math. Methods Appl. Sci. 28, 1919-1937 (2005). [CrossRef]
  18. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878-888 (2006). [CrossRef]
  19. L. A. Kunyansky, “Explicit inversion formulae for the spherical mean Radon transform,” Inverse Probl. 23, 373-383 (2007). [CrossRef]
  20. Y. Xu and L. V. Wang, “Reconstructions in limited-view thermoacoustic tomography,” Med. Phys. 31, 724-733 (2004). [CrossRef] [PubMed]
  21. S. M. Riad, “The deconvolution problem: an overview,” Proc. IEEE 74, 82-85 (1986). [CrossRef]
  22. A. Bennia and S. M. Riad, “An optimization technique for iterative frequency-domain deconvolution,” IEEE Trans. Instrum. Meas. 39, 358-362 (1990). [CrossRef]
  23. D.-H. Huang, C.-K. Liao, C.-W. Wei, and P.-C. Li, “Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method,” J. Acoust. Soc. Am. 117, 2795-2801 (2005). [CrossRef] [PubMed]
  24. M. L. Agranovsky and E. T. Quinto, “Injectivity sets for the radon transform over circles and complete systems of radial functions,” J. Funct. Anal. 139, 383-414 (1996). [CrossRef]
  25. S. K. Patch, “Thermoacoustic tomography--consistency conditions and the partial scan problem,” Phys. Med. Biol. 49, 2305-2315 (2004). [CrossRef] [PubMed]
  26. V. P. Palamodov, “Reconstruction from limited data of arc means,” J. Fourier Anal. Appl. 6, 25-42 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited